【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知△OAB是等腰直角三角形,且∠OAB=90°,若點(diǎn)A的坐標(biāo)(3,1),則點(diǎn)B的坐標(biāo)為______

【答案】(2,4)或(4,﹣2)

【解析】

分兩種情況討論:當(dāng)點(diǎn)B在第一象限時(shí),過(guò)AACx軸于C,過(guò)BBDACD;當(dāng)點(diǎn)B'在第四象限時(shí),過(guò)AAEy軸于E,過(guò)B'B'FAEF,分別依據(jù)全等三角形的對(duì)應(yīng)邊相等,即可得到點(diǎn)B的坐標(biāo).

如圖,當(dāng)點(diǎn)B在第一象限時(shí),過(guò)AACx軸于C,過(guò)BBDACD,則AC=1,OC=3,

易得ABD≌△OAC(AAS),

AC=BD=1,AD=OC=3,

B(2,4);

當(dāng)點(diǎn)B'在第四象限時(shí),過(guò)AAEy軸于E,過(guò)B'B'FAEF,則OE=1,AE=3,

易得AOE≌△B'AF(AAS),

AF=OE=1,B'F=AE=3,

B'(4,-2),

故答案為:(2,4)或(4,-2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤(pán),取名為開(kāi)心大轉(zhuǎn)盤(pán),游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針指向字母A,則收費(fèi)2元,若指針指向字母B,則獎(jiǎng)勵(lì)3元;若指針指向字母C,則獎(jiǎng)勵(lì)1元.一天,前來(lái)尋開(kāi)心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過(guò)A(2,1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.

1)求該一次函數(shù)的解析式;

2)求點(diǎn)C和點(diǎn)D的坐標(biāo);

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實(shí)驗(yàn)與游戲.
(1)在實(shí)驗(yàn)中他們共做了50次試驗(yàn),試驗(yàn)結(jié)果如下:

朝上的點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

10

9

6

9

8

8

①填空:此次實(shí)驗(yàn)中,“1點(diǎn)朝上”的頻率是
(2)在游戲時(shí)兩人約定:每次同時(shí)擲兩枚骰子,如果兩枚骰子的點(diǎn)數(shù)之和超過(guò)6,則小亮獲勝,否則小明獲勝.則小亮與小明誰(shuí)獲勝的可能性大?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有一塊長(zhǎng)方形水稻試驗(yàn)田,試驗(yàn)田的長(zhǎng)、寬(如圖所示,長(zhǎng)度單位:米),試驗(yàn)田分兩部分,一部分為水渠,另一部分為新型水稻種植田(陰影部分).

(1)用含a,b的式子表示新型水稻種植田的面積是多少平方米(結(jié)果化成最簡(jiǎn)形式);

(2)a=30,b=40,在農(nóng)民豐收節(jié)到來(lái)之時(shí)水稻成熟,計(jì)劃先由甲型收割機(jī)收割一部分,再由乙型收割機(jī)收割剩余部分,甲型收割機(jī)收割水稻每平方米的費(fèi)用為0.3元,乙型收割機(jī)收割水稻每平方米的費(fèi)用為0.5元,若要收割全部水稻的費(fèi)用不超過(guò)5000元,問(wèn)甲型收割機(jī)最少收割多少平方米的水稻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實(shí)心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內(nèi)的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過(guò)程中水桶內(nèi)的水量未改變,若不計(jì)水桶厚度,則水桶內(nèi)的水面高度變?yōu)槎嗌俟?( 。?/span>

A.4.5
B.6
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,

(1)寫(xiě)出數(shù)軸上點(diǎn)B所表示的數(shù)   

(2)點(diǎn)P所表示的數(shù)   ;(用含t的代數(shù)式表示);

(3)MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,請(qǐng)你畫(huà)出圖形,并求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案