【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點A順時針旋轉(zhuǎn)得到△AB1C1,當(dāng)點C1、B1、C三點共線時,旋轉(zhuǎn)角為α,連接BB1,交AC于點D.下列結(jié)論:AC1C為等腰三角形;AB1D∽△BCD;③α75°;CACB1,其中正確的是(  )

A.①③④B.①②④C.②③④D.①②③④

【答案】B

【解析】

將△ABC繞點A順時針旋轉(zhuǎn)得到△AB1C1,得到△ABC≌△AB1C1,根據(jù)全等三角形的性質(zhì)得到AC1=AC,于是得到△AC1C為等腰三角形;故①正確;根據(jù)等腰三角形的性質(zhì)得到∠C1=ACC1=30°,由三角形的內(nèi)角和得到∠C1AC=120°,得到∠B1AB=120°,根據(jù)等腰三角形的性質(zhì)得到∠AB1B=30°=ACB,于是得到△AB1D∽△BCD;故②正確;由旋轉(zhuǎn)角α=120°,故③錯誤;根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠C1AB1=BAC=45°,推出∠B1AC=AB1C,于是得到CA=CB1;故④正確.

解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△AB1C1

∴△ABC≌△AB1C1,

AC1AC

∴△AC1C為等腰三角形;故正確;

AC1AC

∴∠C1=∠ACC130°,

∴∠C1AC120°,

∴∠B1AB120°,

AB1AB,

∴∠AB1B30°=∠ACB,

∵∠ADB1=∠BDC

∴△AB1D∽△BCD;故正確;

∵旋轉(zhuǎn)角為α,

α120°,故錯誤;

∵∠C1AB1=∠BAC45°,

∴∠B1AC75°,

∵∠AB1C1=∠BAC105°,

∴∠AB1C75°,

∴∠B1AC=∠AB1C,

CACB1;故正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[問題發(fā)現(xiàn)]如圖1,半圓的直徑是半圓上的一個動點,則面積的最大值是_

[問題解決]如圖2所示的是某街心花園的一角.在扇形中,米,在圍墻上分別有兩個入口米,的中點,出口上.現(xiàn)準(zhǔn)備沿從入口到出口鋪設(shè)兩條景觀小路,在四邊形內(nèi)種花,在剩余區(qū)域種草.

①出口設(shè)在距直線多遠(yuǎn)處可以使四邊形的面積最大?最大面積是多少?(小路寬度不計)

②已知鋪設(shè)小路所用的普通石材每米的造價是元,鋪設(shè)小路所用的景觀石材每米的造價是元問:在上是否存在點,使鋪設(shè)小路的總造價最低?若存在,請求出最低總造價和出口距直線的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動,其中是過程,轉(zhuǎn)是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對應(yīng)點到旋轉(zhuǎn)中心的距離相等:對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問題的關(guān)。

實踐操作:如圖1,在RtABC中,∠B90°,BC2AB12,點D,E分別是邊BCAC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

問題解決:(1)①當(dāng)α時,   ;②當(dāng)α180°時,   

2)試判斷:當(dāng)0°≤a360°時,的大小有無變化?請僅就圖2的情形給出證明.

問題再探:(3)當(dāng)△EDC旋轉(zhuǎn)至A,DE三點共線時,求得線段BD的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線yax22mx3m2)(m0)交x軸于A、B兩點(其中A點在B點左側(cè)),交y軸于點C

1)若A點坐標(biāo)為(﹣1,0),則B點坐標(biāo)為 

2)如圖1,在 1)的條件下,且am1,設(shè)點My軸上且滿足∠OCA+AMO=∠ABC,試求點M坐標(biāo).

3)如圖2,在y軸上有一點P0,n)(點P在點C的下方),直線PAPB分別交拋物線于點E、F,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與坐標(biāo)軸分別交于A、B兩點,與反比例函數(shù)y的圖象在第一象限的交點為C,CDx軸于D,若OB3,OD6,AOB的面積為3

1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

2)當(dāng)x0時,比較kx+b的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店11月份購進(jìn)甲、乙兩種水果共花費1700元,其中甲種水果8/千克,乙種水果18/千克.12月份,這兩種水果的進(jìn)價上調(diào)為:甲種水果10/千克,乙種水果20/千克.

1)若該店12月份購進(jìn)這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進(jìn)甲、乙兩種水果分別是多少千克?

2)若12月份將這兩種水果進(jìn)貨總量減少到120千克,設(shè)購進(jìn)甲種水果a千克,需要支付的貨款為w元,求wa的函數(shù)關(guān)系式;

3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc0;②4a+2b+c0;③a;④bc.其中含所有正確結(jié)論的選項是( )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,于點,點是線段的一個動點,則的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年第七屆世界軍人運動會(7thCISMMilitaryWorldGames)于20191018日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運動員在一次訓(xùn)練中射擊了10次,成績?nèi)鐖D所示.下列結(jié)論中不正確的有(  )個

①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案