【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)
(1)求a、b的值;
(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;
(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.
【答案】
(1)解:∵點C是直線l1:y=x+1與軸的交點,
∴C(0,1),
∵點C在直線l2上,
∴b=1,
∴直線l2的解析式為y=ax+1,
∵點B在直線l2上,
∴2a+1=0,
∴a=﹣ ;
(2)解:由(1)知,l1的解析式為y=x+1,令y=0,
∴x=﹣1,
由圖象知,點Q在點A,B之間,
∴﹣1<n<2
(3)解:如圖,
∵△PAC是等腰三角形,
∴①點x軸正半軸上時,當AC=P1C時,
∵CO⊥x軸,
∴OP1=OA=1,
∴BP1=OB﹣OP1=2﹣1=1,
∴1÷1=1s,
②當P2A=P2C時,易知點P2與O重合,
∴BP2=OB=2,
∴2÷1=2s,
③點P在x軸負半軸時,AP3=AC,
∵A(﹣1,0),C(0,1),
∴AC= ,
∴AP3= ,
∴BP3=OB+OA+AP3=3+ 或BP3=OB+OA﹣AP3=3﹣ ,
∴(3+ )÷1=(3+ )s,或(3﹣ )÷1=(3﹣ )s,
即:滿足條件的時間t為1s,2s,或(3+ )或(3﹣ )s.
【解析】(1)C點坐標可由l1解析式求出,再把B、C坐標代入l2解析式中,求出a、b ;(2)數(shù)形結合,Q點須在A、B之間;(3)△PAC是等腰三角形時須分類討論,注意P在x軸正半軸和負半軸兩大類,三小類:AC=P1C或P2A=P2C或AP3=AC,由兩邊相等建立方程,求出t.
【考點精析】關于本題考查的等腰三角形的性質,需要了解等腰三角形的兩個底角相等(簡稱:等邊對等角)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】某檢修小組乘一輛檢修車沿一段東西方向鐵路檢修,規(guī)定向東走為正,向西走為負,小組的出發(fā)地記為M,某天檢修完畢時,行走記錄(單位:千米)如下:
+12,-5,-9,+10,-4,+15,-9,+3,-6,-3,-7
(1)問收工時,檢修小組距出發(fā)地M有多遠?在東側還是西側?
(2)若檢修車每千米耗油0.2升,求從出發(fā)到收工時檢修車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點O逆時針旋轉90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關系,并說明理由;
(3)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x、y的方程組 (a≥0),給出下列說法:
①當a=1時,方程組的解也是方程x+y=2的一個解;
②當x﹣2y>8時,a> ;
③不論a取什么實數(shù),2x+y的值始終不變;
④某直角三角形的兩條直角邊長分別為x+y,x﹣y,則其面積最大值為 .
以上說法正確的是( )
A.②③
B.①②④
C.③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數(shù)相等,比賽結束后,發(fā)現(xiàn)學生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:
乙校成績統(tǒng)計表
分數(shù)/分 | 人數(shù)/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計算知s甲2=135,s乙2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,過點B做射線BB1∥AC,動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動,過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,連接DF,設運動的時間為t秒(t>0).
(1)當t為時,AD=AB,此時DE的長度為;
(2)當△DEF與△ACB全等時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當t> 時,設△ADA′的面積為S,直接寫出S關于t的函數(shù)關系式;
③當線段A′C′與射線BB1有公共點時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的4月23日是“世界讀書日”.某中學為了了解八年級學生的讀書情況,隨機調查了50名學生的冊數(shù),統(tǒng)計數(shù)據(jù)如表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
則這50名學生讀數(shù)冊數(shù)的眾數(shù)、中位數(shù)是( )
A.3,3
B.3,2
C.2,3
D.2,2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家騎車上學,先勻速上坡到達地后再勻速下坡到達學校,所用的時間與路程如圖所示,如果返回時,上、下坡速度仍然保持不變,那么他從學校回到家需要的時間是( )
A.9分鐘B.12分鐘C.8分鐘D.10分鐘
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com