【題目】如圖,在5×5的正方形網(wǎng)格中,從在格點(diǎn)上的點(diǎn)A,B,C,D中任取三點(diǎn),所構(gòu)成的三角形恰好是直角三角形的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

先求出每邊的平方,得出AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,根據(jù)勾股定理的逆定理得出直角三角形即可.

理由是:連接AC、AB、AD、BC、CD、BD,

設(shè)小正方形的邊長為1,

由勾股定理得:AB2=12+22=5,AC2=22+42=20,AD2=12+32=10,BC2=52=25,CD2=12+32=10,BD2=12+22=5,

AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,

ABC、ADC、ABD是直角三角形,共3個(gè)直角三角形,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結(jié)論中,正確的是( 。

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=kx+b的自變量x的取值范圍是-2≤x≤6,相應(yīng)的函數(shù)值的范圍是-11≤y≤9,求此函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AD BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過點(diǎn) E EFAC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正確的有( )

A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一個(gè)角比另一個(gè)角倍少度,等腰三角形頂角的度數(shù)是( )

A. B. C. D. 80°或

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來多肉植物風(fēng)靡全國.花農(nóng)王大伯分別培植了一批國產(chǎn)多肉與進(jìn)口多肉.第一次出售國產(chǎn)多肉與進(jìn)口多肉各100盆,售后發(fā)現(xiàn):國產(chǎn)多肉的平均每盆利潤是5元并且始終不變;進(jìn)口多肉的平均每盆利潤是15元,每增加1盆,進(jìn)口多肉的平均每盆利潤增加1元.王大伯計(jì)劃第二次出售國產(chǎn)多肉與進(jìn)口多肉共200盆,設(shè)進(jìn)口多肉比第一次增加x盆.

1)用含x的代數(shù)式分別表示第二次國產(chǎn)多肉與進(jìn)口多肉售完后的利潤;

2)要使第二次國產(chǎn)多肉與進(jìn)口多肉售完后的總利潤比第一次國產(chǎn)多肉與進(jìn)口多肉售完后總利潤多60%,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價(jià)格及月處理污水量如下表所示:

1)求m的值;

2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問采用何種購買方案可以使得每月處理污水量的噸數(shù)為最多?并求出最多噸數(shù).

查看答案和解析>>

同步練習(xí)冊答案