【題目】如圖,ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CDABDDFCEF,

(1)試說明CDCBE的角平分線;

(2)和∠B相等的角是

【答案】1)證明見解析;(2∠CEB、∠CDF

【解析】

1)根據(jù)∠A=30°,∠B=70°,得∠ACB=80°,由角平分線的定義得∠BCE=40,根據(jù)三角形的內(nèi)角和定理得∠BCD=20°,從而得出CD△BCE的角平分線.

2)由直角三角形兩個銳角互余,得∠B=∠CEB.根據(jù)等角的余角相等,得∠B=∠CDF

解:(1∵∠A=30°,∠B=70°,

∴∠ACB=80°

∵CE平分∠ACB,

∴∠BCE=40

∵∠B=70°,∠CDB=90°

∴∠BCD=20°

∴∠ECD=∠BCD=20°

∴CD△BCE的角平分線.

2∵∠ECD=20°,∠CDE=90°

∴∠CEB=70°

∴∠B=∠CEB

∵∠CFD=90°,∠FCD=20°,

∴∠CDF=70°

∴∠CDF=∠B

∠B相等的角是:∠CEB、∠CDF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是定長線段上一點,、兩點分別從點、出發(fā)以1厘米/秒,2厘米/秒的速度沿直線向左運動(點在線段上,點在線段上).

1)若點運動到任一時刻時,總有,請說明點在線段上的位置;

2)在(1)的條件下,點是直線上一點,且,求的值;

3)在(1)的條件下,若點、運動5秒后,恰好有,此時點停止運動,點繼續(xù)運動(點在線段上),點、分別是、的中點,下列結(jié)論:①的值不變;②的值不變.可以說明,只有一個結(jié)論是正確的,請你找出正確的結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點AABy軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C

1)如圖,當點B1在線段BA延長線上時.求證:BB1∥CA1;△AB1C的面積;

2)如圖,點EBC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1,求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,菱形ABCD中,AB=5cm,動點P從點B出發(fā),沿折線BC﹣CD﹣DA運動到點A停止,動點Q從點A出發(fā),沿線段AB運動到點B停止,它們運動的速度相同,設(shè)點P出發(fā)xs時,△BPQ的面積為ycm2 , 已知yx之間的函數(shù)關(guān)系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請根據(jù)圖中的信息,解答下列問題:

(1)當1<x<2時,△BPQ的面積________(填不變”);

(2)分別求出線段OM,曲線NK所對應(yīng)的函數(shù)表達式;

(3)當x為何值時,△BPQ的面積是5cm2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點C、A、A′,求此拋物線的解析式;

(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;

(3)點M是第一象限內(nèi)拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點A(﹣1,2),Bm,﹣1).

(1)求這兩個函數(shù)的表達式;

(2)在x軸上是否存在點Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,BAD<90°,O與邊AB,AD都相切,AO=10,則O的半徑長等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,DCB=45°,CD=2,BDCD.過點CCEABE,交對角線BDF,點GBC中點,連接EG、AF.

(1)求EG的長;

(2)求證:CF=AB+AF.

查看答案和解析>>

同步練習冊答案