【題目】小文同學(xué)每天乘從BRT(城市快速公交)上學(xué),為了方便乘坐BRT,他用自己勤工儉學(xué)的錢買了80元的公交卡.如果他乘坐的次數(shù)用n表示,則記錄他每次乘坐BRT后公交卡的余額(單位:元)如下表:
次數(shù)n | 余額(元) |
1 | 80-0.9 |
2 | 80-1.8 |
3 | 80-2.7 |
4 | 80-3.6 |
… | … |
(1)寫出用乘坐BRT的次數(shù)n表示余額的式子為____________________;
(2)利用(1)中的式子,幫助小文同學(xué)算一算,他一個月乘坐BRT有84次,這80元的公交卡夠不夠用,若夠用,能剩多少元?
(3)小文同學(xué)用80元的公交卡最多能乘坐BRT__________________次.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖像如圖所示,則下列結(jié)論:
①abc>0;②a+b+c=2;③b>1;④a< .
其中正確的結(jié)論是( )
A.①②
B.②③
C.③④
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)
(1)當k= 時,將這個二次函數(shù)的解析式寫成頂點式;
(2)求證:關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(教材回顧)課本88頁,有這樣一段文字:人們通過長期觀察發(fā)現(xiàn)如果早晨天空中棉絮的高積云,那么午后常有雷雨降臨,于是有了“朝有破絮云,午后雷雨臨”的諺語.在數(shù)學(xué)的學(xué)習過程中,我們經(jīng)常用這樣的方法探究規(guī)律.
(數(shù)學(xué)問題)三角形有3個頂點,如果在它的內(nèi)部再畫n個點,并以這(n+3)個點為頂點畫三角形,那么最多可以剪得多少個這樣的三角形?
(問題探究)為了解決這個問題,我們可以從n=1,n=2,n=3等具體的、簡單的情形入手,探索最多可以剪得的三角形個數(shù)的變化規(guī)律.
三角形內(nèi)點的個數(shù) | 圖形 | 最多剪出的小三角形個數(shù) |
1 | 3 | |
2 | 5 | |
3 | 7 | |
… | … | … |
(問題解決)
(1) 當三角形內(nèi)有4個點時,最多剪得的三角形個數(shù)為______________;
(2) 你發(fā)現(xiàn)的變化規(guī)律是:三角形內(nèi)的點每增加1個,最多剪得的三角形增加______個;
(3) 猜想:當三角形內(nèi)點的個數(shù)為n時,最多可以剪得_______________個三角形;
像這樣通過對簡單情形的觀察、分析,從特殊到一般地探索這類現(xiàn)象的規(guī)律、提出猜想的思想方法稱為歸納.
(問題拓展)
(4)請你嘗試用歸納的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的重量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:
與標準重量的差值(單位:g) | ﹣5 | ﹣2 | 0 | 1 | 3 | 6 |
袋數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)計算這批樣品的平均重量,判斷它比標準重量重還是輕多少?
(2)若標準重量為450克,則這批樣品的總重量是多少?
(3)若這種食品的合格標準為450±5克,則這批樣品的合格率為 (直接填寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l交x軸于點C,交y軸于點D,與反比例函數(shù)y= (k>0)的圖像交于兩點A、E,AG⊥x軸,垂足為點G,S△ADG=3
(1)k=;
(2)求證:AD=CE;
(3)如圖2,若點E為平行四邊形OABC的對角線AC的中點,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點A關(guān)于BC邊的對稱點為A′,點B關(guān)于AC邊的對稱點為B′,點C關(guān)于AB邊的對稱點為C′,則△ABC與△A′B′C′的面積之比為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖像如圖所示,圖像過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣ ,y2)、點C( ,y3)在該函數(shù)圖像上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結(jié)論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com