【題目】(1)機(jī)械廠加工車間有85名工人,平均每人每天加工大齒輪16個(gè)或小齒輪10個(gè),已知2個(gè)大齒輪與3個(gè)小齒輪配成一套,問(wèn)需分別安排多少名工人加工大、小齒輪,才能使每天加工的大小齒輪剛好配套?
(2)某蔬菜公司的一種綠色蔬菜,若在市場(chǎng)上直接銷售,每噸利潤(rùn)為1000元,經(jīng)粗加工后銷售,每噸利潤(rùn)可達(dá)4500元,經(jīng)精加工后銷售,每噸利潤(rùn)漲至7500元,當(dāng)?shù)匾患夜臼召?gòu)這種蔬菜140噸,該公司的加工生產(chǎn)能力是:如果對(duì)蔬菜進(jìn)行粗加工,每天可加工16噸,如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時(shí)進(jìn)行,受季節(jié)等條件限制,公司必須在15天將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案:
方案一:將蔬菜全部進(jìn)行粗加工.
方案二:盡可能多地對(duì)蔬菜進(jìn)行精加工,沒(méi)來(lái)得及進(jìn)行加工的蔬菜,在市場(chǎng)上直接銷售.
方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.
你認(rèn)為哪種方案獲利最多?為什么?
【答案】(1)需安排25名工人加工大齒輪,安排60名工人加工小齒輪;(2)該公司可以粗加工這種食品80噸,精加工這種食品60噸,可獲得最高利潤(rùn)為810000元.
【解析】
(1)設(shè)需安排x名工人加工大齒輪,安排y名工人加工小齒輪,根據(jù)平均每人每天加工大齒輪16個(gè)或小齒輪10個(gè),2個(gè)大齒輪和3個(gè)小齒輪配成一套,可列成方程組求解.
(2)方案一:直接用算術(shù)方法計(jì)算:粗加工的利潤(rùn)×噸數(shù);方案二:首先根據(jù)每天精加工的噸數(shù)以及天數(shù)的限制,知精加工了15×6=90噸,還有50噸直接銷售;方案三:設(shè)精加工x天,則粗加工(15﹣x)天,根據(jù)加工的總噸數(shù)為140噸列方程求得x的值,然后可求得獲得的利潤(rùn).
(2)設(shè)需安排x名工人加工大齒輪,安排y名工人加工小齒輪,根據(jù)題意得:
解得:.
答:需安排25名工人加工大齒輪,安排60名工人加工小齒輪.
(2)方案一:∵4500×140=630000(元),∴將食品全部進(jìn)行粗加工后銷售,則可獲利潤(rùn)630000元;
方案二:15×6×7500+(140﹣15×6)×1000=725000(元),∴將食品盡可能多的進(jìn)行精加工,沒(méi)來(lái)得及加工的在市場(chǎng)上直接銷售,則可獲利潤(rùn)725000元;
方案三:設(shè)精加工x天,則粗加工(15﹣x)天.
根據(jù)題意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的噸數(shù)=6×10=60,16×5=80噸.
這時(shí)利潤(rùn)為:80×4500+60×7500=810000(元)
答:該公司可以粗加工這種食品80噸,精加工這種食品60噸,可獲得最高利潤(rùn)為810000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某個(gè)正方體的表面展開(kāi)圖,各個(gè)面上分別標(biāo)有1﹣6的不同數(shù)字,若將其折疊成正方體,則相交于同一個(gè)頂點(diǎn)的三個(gè)面上的數(shù)字之和最大的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖1.當(dāng)∠COD在∠AOB的內(nèi)部時(shí)
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖2,當(dāng)∠COD在∠AOB的外部時(shí),(1)中∠AOC與∠DOE的數(shù)量關(guān)系還成立嗎?若成立,請(qǐng)推導(dǎo)出∠AOC與∠DOE的度數(shù)之間的關(guān)系;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,請(qǐng)說(shuō)明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD=∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標(biāo)系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點(diǎn)O′為中心的位似圖形,已知AC=3 ,若點(diǎn)A′的坐標(biāo)為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線AB與CD之間,請(qǐng)說(shuō)明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)E在AB與CD的上方,①請(qǐng)嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC=AD,∠CAD=60°,分別連接BC、BD,作AE平分∠BAC交BD于點(diǎn)E,若BE=4,ED=8,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com