【題目】為迎接我市創(chuàng)建全國文明城市活動,環(huán)衛(wèi)處投資20萬元購買并投放一批垃圾清掃車,因為清掃車需求量增加,計劃繼續(xù)投放型清掃車,型清掃車的投放數(shù)量與型清掃車的投放數(shù)量相同,投資總費用減少,購買型清掃車的單價比購買型清掃車的單價少50元,則型清掃車每輛車的價格是多少元?設(shè)型清掃車每輛車的價格為元,根據(jù)題意,列方程正確的是(

A.B.

C.D.

【答案】C

【解析】

設(shè)B型清掃車每輛車的價格為元,則A型清掃車每輛車的價格為(x+50)元,依據(jù)“型清掃車的投放數(shù)量與 型清掃車的投放數(shù)量相同,”列出關(guān)于x的方程,即可得到答案.

解:設(shè)B型清掃車每輛車的價格為 元,則A型清掃車每輛車的價格為(x+50)元,

根據(jù)題意,得:

;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在梯形ABCD中, ADBC,AD=3,BC=7, B+C=90°,E、F分別是邊AD、BC的中點,那么線段EF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,

1)請畫出關(guān)于軸對稱的;

2)直接寫出的面積為 ;

3)請僅用無刻度的直尺畫出的平分線,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極開展我愛我的祖國教育知識競賽,八年級甲、乙兩班分別選5名同學(xué)參加比賽,其預(yù)賽成績?nèi)鐖D所示:

1)根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

甲班

8.5

乙班

8.5

10

1.6

2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度對甲乙兩班進(jìn)行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.

已知:弧AB.

求作:弧AB所在的圓.

作法:如圖,

(1)在弧AB上任取三個點D,C,E;

(2)連接DC,EC;

(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點為點O.

(4)以 O為圓心,OC長為半徑作圓,所以O即為所求作的弧AB所在的圓.

請回答:該尺規(guī)作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=﹣2x2+4x+6的圖象與x軸的正半軸交于點A,與y軸交于點C.

(1)AC的長;

(2)求頂點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案