如圖在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB與D,求CD的長.
分析:首先根據(jù)勾股定理求得直角三角形的另一直角邊,再根據(jù)直角三角形的面積公式求得斜邊上的高CD.
解答:解:在直角三角形ABC中,
AC=
AB2-BC2
=
52-32
=4(cm),
根據(jù)直角三角形的面積公式,得CD=
AC•BC
AB
=
4×3
5
=
12
5
(cm),
所以CD的長為
12
5
cm.
點評:此題要熟練運用勾股定理以及直角三角形的面積公式.
直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習冊答案