【題目】如圖,已知拋物線軸交于點(diǎn)和點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸的交點(diǎn)為.

(1)求點(diǎn)和點(diǎn)的坐標(biāo);

(2)若點(diǎn)為拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo).

【答案】(1)點(diǎn)的坐標(biāo)分別為,;(2)點(diǎn)的坐標(biāo)是.

【解析】

1)當(dāng)時(shí),解一元二次方程,得到方程的解,即可得到AB的坐標(biāo);

2)先求出點(diǎn)C坐標(biāo),然后得到OB=OC,則,從而得到;根據(jù),對(duì)點(diǎn)N進(jìn)行分析,可分為①當(dāng)點(diǎn)N在點(diǎn)C的右側(cè)時(shí),②當(dāng)點(diǎn)N在點(diǎn)C的左側(cè)時(shí)兩類進(jìn)行討論分析,從而通過(guò)計(jì)算,得到點(diǎn)N的坐標(biāo).

解:(1)當(dāng)時(shí),,

解得:

∵點(diǎn)在點(diǎn)的左側(cè),

∴點(diǎn)的坐標(biāo)分別為,;

(2)連接,在中,令,則.

的坐標(biāo)是,.

∵點(diǎn)的坐標(biāo)是

,

,則是等腰直角三角形.

.

過(guò)點(diǎn)軸,垂足是.

,

,

設(shè)點(diǎn)的坐標(biāo)是,當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),

,

,

解得:(舍去)

∴點(diǎn)的坐標(biāo)是

當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),

,

,

解得:(舍去)(舍去)

綜上,點(diǎn)的坐標(biāo)是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一函數(shù)給出如下定義:對(duì)于任意實(shí)數(shù),當(dāng)自變量時(shí),函數(shù)關(guān)于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由兩部分共同組成,則函數(shù)為原函數(shù)的對(duì)折函數(shù),如函數(shù)()的對(duì)折函數(shù)為.

(1)求函數(shù)()的對(duì)折函數(shù);

(2)若點(diǎn)在函數(shù)()的對(duì)折函數(shù)的圖象上,求的值;

(3)當(dāng)函數(shù)()的對(duì)折函數(shù)與軸有不同的交點(diǎn)個(gè)數(shù)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)A的坐標(biāo)為(0,1),取一點(diǎn)Bb0),連接AB,作線段AB的垂直平分線,過(guò)點(diǎn)BX軸的垂線,記,的交點(diǎn)為P

1)當(dāng)b=3時(shí),在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡)。

2)小慧多次取不同數(shù)值b,得出相應(yīng)的點(diǎn)P,并把這些點(diǎn)用平滑的曲線連接起來(lái),發(fā)現(xiàn):這些點(diǎn)P竟然在一條曲線L上。

①設(shè)點(diǎn)P的坐標(biāo)為(xy),試求yx之間的關(guān)系式,并指出曲線L是哪種曲線。

②設(shè)點(diǎn)Px軸,y軸的距離分別為,,求+的范圍。當(dāng)+=8時(shí),求點(diǎn)P的坐標(biāo)。

③將曲線在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個(gè)交點(diǎn),直接寫出k的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC90°,BABC2,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△DEC,連接BD,則BD2的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》勾股一章記載:今有戶高多于廣六尺八寸,兩隅相去適一丈.問(wèn)戶高、廣各幾何?譯文:已知長(zhǎng)方形門的高比寬多68寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?(1=10尺,1=10)設(shè)長(zhǎng)方形門的寬尺,可列方程為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)拋物線形的拱形橋洞,橋面離水面的距離為5.6米,橋洞離水面的最大高度為,跨度為如圖所示,把它的圖形放在直角坐標(biāo)系中.

1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.

2)如圖,在對(duì)稱軸右邊處,橋洞離橋面的高是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-2x-2n=0有兩個(gè)不相等的實(shí)數(shù)根,若n<5,且方程的兩個(gè)實(shí)數(shù)根都是整數(shù),則n的值為( 。

A. n=2

B. n=0n=1.5n=4

C. n=4

D. n=0n=1.5n=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以為圓心,半徑為2的圓與軸交于、兩點(diǎn),與軸交于,兩點(diǎn),點(diǎn)為圓上一動(dòng)點(diǎn),,當(dāng)點(diǎn)在圓的運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線BD于點(diǎn)F,則SCDF:S四邊形ABFE等于( 。

A. 1:3 B. 2:5 C. 3:5 D. 4:9

查看答案和解析>>

同步練習(xí)冊(cè)答案