【題目】如圖,點(diǎn)是正方形的邊上的一點(diǎn),,正方形的邊長為8.則的長為__________.
【答案】6
【解析】
作∠BAE的角平分線交BC于點(diǎn)F,過F作FG⊥AE,連接EF,結(jié)合正方形的性質(zhì)和全等三角形的性質(zhì)可得CE=GE,在RtΔADE中根據(jù)勾股定理列方程求解.
解:作∠BAE的角平分線交BC于點(diǎn)F,過F作FG⊥AE,垂足為G,連接EF,
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA, ∠B=∠C=∠D=90°
∵∠ABF=∠AGF=90°,∠BAF=∠GAF,AF=AF,
∴ΔABF≌ΔAGF,
∴AG=AB.
∵AE=BC+CE,AE=AG+GE,AB=AG=BC
∴CE=GE,
設(shè)DE=x,則CE=EG=8-x
在RtΔADE中,由勾股定理得,
∴
解得,x=6
∴DE=6.
故答案為:6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)B(7,6),頂點(diǎn)A、C在坐標(biāo)軸上,矩形內(nèi)部一點(diǎn)D在雙曲線y=上,DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,若四邊形DEBF為正方形,則點(diǎn)D的坐標(biāo)是( 。
A. (2,6) B. (3,4) C. (4,3) D. (6,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求直線BC的解析式;
(3)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知和中,,,,,;
請說明的理由;
可以經(jīng)過圖形的變換得到,請你描述這個(gè)變換;
求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的有( )
(1)兩邊及其中一邊上的中線對應(yīng)相等的兩個(gè)三角形全等
(2)兩邊及第三邊上的中線對應(yīng)相等的兩個(gè)三角形全等
(3)兩邊及其中一邊上的高對應(yīng)相等的兩個(gè)三角形全等
(4)兩邊及第三邊上的高對應(yīng)相等的兩個(gè)三角形全等
(5)兩角及夾邊上的高對應(yīng)相等的兩個(gè)三角形全等
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是等邊△ABC的邊AC上一點(diǎn),以BD為邊作等邊△BDE,點(diǎn)C,E在BD同側(cè),下列結(jié)論:①∠ABD=30°;②CE∥AB;③CB平分∠ACE;④CE=AD,其中錯(cuò)誤的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABE中,∠A=90°,點(diǎn)C在AB上,∠CEB=2∠AEC=45°.
(1)求∠B的度數(shù);
(2)求證:BC=2AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中點(diǎn),CE⊥BD
(1)求證:△ABD≌△BCE.
(2)求證:AC是線段ED的垂直平分線.
(3)△DBC是等腰三角形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過格點(diǎn)A、B、C作一圓。
(1)弧AC的長為_____(結(jié)果保留π);
(2)點(diǎn)B與圖中格點(diǎn)的連線中,能夠與該圓弧相切的連線所對應(yīng)的格點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com