計算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.
科目:初中數(shù)學 來源: 題型:
如圖,A點的初始位置位于數(shù)軸上的原點,現(xiàn)對A點做如下移動:第1次從原點向右移動1個單位長度至B點,第2次從B點向左移動3個單位長度至C點,第3次從C點向右移動6個單位長度至D點,第4次從D點向左移動9個單位長度至E點,…,依此類推,這樣至少移動 次后該點到原點的距離不小于41.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一個多邊形紙片按圖示的剪法剪去一個內(nèi)角后,得到一個內(nèi)角和為2340°的新多邊形,則原多邊形的邊數(shù)為( )
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點,試問當點M在什么位置時,直線DM與⊙O相切?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
問題背景:
如圖1:在四邊形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關系.
小王同學探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是 EF=BE+DF ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進.1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com