如圖,已知雙曲線經(jīng)過(guò)點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限分支上的動(dòng)點(diǎn),過(guò)C作CA⊥x軸,過(guò)D作DB⊥y軸,垂足分別為A,B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說(shuō)明理由.
(1)k=6;(2);(3)根據(jù)題意求出點(diǎn)A、B的坐標(biāo),然后利用待定系數(shù)法求出直線AB的解析式,可知與直線CD的解析式k值相等,所以AB、CD平行.
解析試題分析:(1)把點(diǎn)D的坐標(biāo)代入雙曲線解析式,進(jìn)行計(jì)算即可得解;
(2)先根據(jù)點(diǎn)D的坐標(biāo)求出BD的長(zhǎng)度,再根據(jù)三角形的面積公式求出點(diǎn)C到BD的距離,然后求出點(diǎn)C的縱坐標(biāo),再代入反比例函數(shù)解析式求出點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)根據(jù)題意求出點(diǎn)A、B的坐標(biāo),然后利用待定系數(shù)法求出直線AB的解析式,可知與直線CD的解析式k值相等,所以AB、CD平行.
解:(1)∵雙曲線經(jīng)過(guò)點(diǎn)D(6,1),
∴,解得k=6;
(2)設(shè)點(diǎn)C到BD的距離為h,
∵點(diǎn)D的坐標(biāo)為(6,1),DB⊥y軸,
∴BD=6,
∴S△BCD=×6•h=12,
解得h=4,
∵點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),點(diǎn)D的縱坐標(biāo)為1,
∴點(diǎn)C的縱坐標(biāo)為1-4=-3,
∴,解得x=-2,
∴點(diǎn)C的坐標(biāo)為(-2,-3),
設(shè)直線CD的解析式為y=kx+b,
所以,直線CD的解析式為;
(3)AB∥CD.理由如下:
∵CA⊥x軸,DB⊥y軸,設(shè)點(diǎn)C的坐標(biāo)為(c,),點(diǎn)D的坐標(biāo)為(6,1),
∴點(diǎn)A、B的坐標(biāo)分別為A(c,0),B(0,1),
設(shè)直線AB的解析式為y=mx+n,
所以,直線AB的解析式為y=-x+1,
設(shè)直線CD的解析式為y=ex+f,
∴直線CD的解析式為y=-x+,
∵AB、CD的解析式k都等于-,
∴AB與CD的位置關(guān)系是AB∥CD.
考點(diǎn):反比例函數(shù)的綜合題
點(diǎn)評(píng):本題是對(duì)反比例函數(shù)的綜合考查,主要利用了待定系數(shù)法求函數(shù)解析式,三角形的面積的求解,待定系數(shù)法是求函數(shù)解析式最常用的方法,一定要熟練掌握并靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=900,∠BCO=450,BC=,點(diǎn)C的坐標(biāo)為(-18,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013年四川廣安8分)某商場(chǎng)籌集資金12.8萬(wàn)元,一次性購(gòu)進(jìn)空調(diào)、彩電共30臺(tái).根據(jù)市場(chǎng)需要,這些空調(diào)、彩電可以全部銷(xiāo)售,全部銷(xiāo)售后利潤(rùn)不少于1.5萬(wàn)元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見(jiàn)表格.
| 空調(diào) | 彩電 |
進(jìn)價(jià)(元/臺(tái)) | 5400 | 3500 |
售價(jià)(元/臺(tái)) | 6100 | 3900 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
漳州三寶之一“水仙花”暢銷(xiāo)全球,某花農(nóng)要將規(guī)格相同的800件水仙花運(yùn)往A,B,C三地銷(xiāo)售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的3倍,各地的運(yùn)費(fèi)如下表所示:
| A地 | B地 | C地 |
運(yùn)費(fèi)(元/件) | 20 | 10 | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+b的圖象相交于兩點(diǎn)A(m,3)和B(﹣3,n).
(1)求一次函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出使反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,已知二次函數(shù) =,當(dāng)<<時(shí), 隨的增大而增大,則實(shí)數(shù)a的取值范圍是 ( )
A.> | B.<≤ | C.>0 | D.<< |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過(guò)點(diǎn)A(3,0),二次函數(shù)圖象的對(duì)稱軸是x=1,下列結(jié)論正確的是( 。
A.b2>4ac | B.a(chǎn)c>0 | C.a(chǎn)﹣b+c>0 | D.4a+2b+c<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
二次函數(shù)y=ax2+bx-1(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,1).則代數(shù)式1-a-b的值為( )
A.-3 | B.-1 | C.2 | D.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
將一條拋物線向左平移2個(gè)單位后得到了y=2x2的函數(shù)圖象,則這條拋物線是( )
A.y=2x2+2 | B.y=2x2-2 | C.y=2(x-2)2 | D.y=2(x+2)2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com