【題目】下列式子成立的是(
A.﹣1+1=0
B.﹣1﹣1=0
C.0﹣5=5
D.(+5)﹣(﹣5)=0

【答案】A
【解析】解:A、原式=0,正確;

B、原式=﹣2,錯誤;

C、原式=﹣5,錯誤;

D、原式=5+5=10,錯誤,

故選A

原式各項計算得到結果,即可作出判斷.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可用長度a10m)

(1)如果所圍成的花圃的面積為45m2,試求寬AB的長;

(2)按題目的設計要求,能圍成面積比45m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F(xiàn).

(1)證明:當旋轉角為90°時,四邊形ABEF是平行四邊形;

(2)試說明在旋轉過程中,線段AF與EC總保持相等;

(3)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天早晨,王老師從家出發(fā)步行前往學校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學校這一過程中所走的路程S(米)與時間t()之間的關系.

(1)學校離他家 米,從出發(fā)到學校,王老師共用了 分鐘;

(2)王老師吃早餐用了多少分鐘?

(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x2﹣4x+4=0的根的情況是(
A.有兩個相等的實數(shù)根
B.只有一個實數(shù)根
C.沒有實數(shù)根
D.有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;

(2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;

(3)在(2)的條件下,求出AOB的面積;

(4)利用圖象直接寫出:當y<0時,x的取值范圍.

【答案】(1)畫圖見解析;(2)A(﹣2,0)B(0,4);(3)4;(4)x<﹣2.

【解析】試題分析:(1)求得一次函數(shù)y=2x+4x軸、y軸的交點坐標,利用兩點確定一條直線就可以畫出函數(shù)圖象;(2)由(1)即可得結論;(3)通過交點坐標根據(jù)三角形的面積公式即可求出面積;(4)觀察函數(shù)圖象與x軸的交點就可以得出結論.

試題解析:(1)當x=0y=4,當y=0時,x=﹣2,則圖象如圖所示

2)由上題可知A﹣20B0,4),

3SAOB=×2×4=4,

4x﹣2

考點:一次函數(shù)圖象與系數(shù)的關系;一次函數(shù)的圖象.

型】解答
束】
21

【題目】在社會主義新農(nóng)村建設中,衢州某鄉(xiāng)鎮(zhèn)決定對A、B兩村之間的公路進行改造,并有甲工程隊從A村向B村方向修筑,乙工程隊從B村向A村方向修筑.已知甲工程隊先施工3天,乙工程隊再開始施工.乙工程隊施工幾天后因另有任務提前離開,余下的任務有甲工程隊單獨完成,直到公路修通.下圖是甲乙兩個工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息解答下列問題:

1)乙工程隊每天修公路多少米?

2)分別求甲、乙工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)關系式.

3)若該項工程由甲、乙兩工程隊一直合作施工,需幾天完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】服裝店銷售某款服裝,標價為300元,若按標價的八折銷售,仍可獲利20%,則這款服裝每件的進價是 元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若正多邊形的一個內角等于120°,則這個正多邊形的邊數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線軸交于A、B兩點(A在B的左側),且A、B兩點的橫坐標是方程-12=0的兩個根.拋物線與軸的正半軸交于點C,且OC=AB.

(1)求A、B、C三點的坐標;

(2)求此拋物線的解析式;

(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為,△CEF的面積為S,求S與之間的函數(shù)關系式;

(4)對于(3),試說明S是否存在最大值或最小值,若存在,請求出此值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案