【題目】已知,如圖1,拋物線過點(diǎn)且對稱軸為直線點(diǎn)B為直線OA下方的拋物線上一動(dòng)點(diǎn),點(diǎn)B的橫坐標(biāo)為m.
(1)求該拋物線的解析式:
(2)若△OAB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)如圖2,過點(diǎn)B作直線BC∥y軸,交線段OA于點(diǎn)C,在拋物線的對稱軸上是否存在點(diǎn)D,使△BCD是以D為直角頂點(diǎn)的等腰直角三角形?若存在,求出所有符合條件的點(diǎn)B的坐標(biāo),若不存在,請說明理由.
【答案】(1);
(2)S, ;
(3)存在,點(diǎn)B為或
【解析】試題分析:(1)根據(jù)拋物線過點(diǎn)且對稱軸為直線即可求得結(jié)果;
(2)過點(diǎn)B作軸,交于點(diǎn),則可得直線為,則可設(shè)點(diǎn),點(diǎn)即可表示出BH,再根據(jù)三角形的面積公式即可表示出S關(guān)于m的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可求得最大值;
(3)設(shè)在拋物線的對稱軸上存在點(diǎn)D滿足題意,過點(diǎn)D作于點(diǎn)Q,則由(2)有點(diǎn),點(diǎn)B,即可表示BC,由△BCD是以D為直角頂點(diǎn)的等腰直角三角形可得,則可得且,再結(jié)合絕對值的性質(zhì)分類討論即可.
(1)由題知: 解之,得
該拋物線的解析式為:
(2)過點(diǎn)B作軸,交于點(diǎn)由題知直線為:
設(shè)點(diǎn)點(diǎn)
(3)設(shè)在拋物線的對稱軸上存在點(diǎn)D滿足題意,
過點(diǎn)D作于點(diǎn)Q,則由(2)有點(diǎn),點(diǎn)B
是以D為直角頂點(diǎn)的等腰直角三角形
即是: 且
若解之:(舍去),
時(shí),
若解之:(舍去)
當(dāng)時(shí),
綜上,滿足條件的點(diǎn)B為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為54°,已知坡角為30°,求樓房AB的高度。(tan54°≈1.38,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月12號(hào)上映的《速度與激情7》在短短兩周票房就突破了15.6億,成為開年第一部現(xiàn)象級(jí)影片.該片已經(jīng)打破了所有進(jìn)口影片票房紀(jì)錄.15.6億用科學(xué)記數(shù)法表示是( 。
A. 15.6×108B. 1.56×108C. 1.56×109D. 156×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程2x2﹣5x+1=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)生了求救信號(hào),一艘在港口正東方向B處的海警船接到求救信號(hào),測得事故船在它的北偏東37°方向,馬上以40海里/時(shí)的速度前往救援,求海警船到達(dá)事故船C處所需的大約時(shí)間.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com