【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F為DC上一點,且FC=AB,E為AD上一點,EC交AF于點G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)先證明四邊形ABCF是平行四邊形.再由∠B=90°,即可得出四邊形ABCF是矩形.
(2)由等腰三角形的性質(zhì)得出∠D=∠ECD,證出∠EAG=∠EGA,即可得出結(jié)論.
試題解析:(1)證明:∵AB∥DC,F(xiàn)C=AB,
∴四邊形ABCF是平行四邊形.
∵∠B=90°,
∴四邊形ABCF是矩形.
(2)證明:由(1)可得,∠AFC=90°,
∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.
∵ED=EC,
∴∠D=∠ECD.
∴∠DAF=∠CGF.
∵∠EGA=∠CGF,
∴∠EAG=∠EGA.
∴EA=EG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,射線分別和直線交于點,射線分別和直線交于點,點在射線上運動(點與三點不重合),設(shè),,.
(1)如果點在兩點之間運動時,之間有何數(shù)量關(guān)系?請說明理由;
(2)如果點在兩點之外運動時,之間有何數(shù)量關(guān)系?(只需寫出結(jié)論,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,E,F(xiàn)分別是OA,OC的中點,連接BE,DF
(1)根據(jù)題意,補全原形;
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五月初,我市多地遭遇了持續(xù)強降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種救災(zāi)物品共2000件送往災(zāi)區(qū),已知每件甲種物品的價格比每件乙種物品的價格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同
(1)求甲、乙兩種救災(zāi)物品每件的價格各是多少元?
(2)經(jīng)調(diào)查,災(zāi)區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從友誼體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同、每個籃球的價格相同),若購買3個籃球和2個足球共需420元;購買2個籃球和4個足球共需440元.
(1)購買一個籃球、一個足球各需多少元?
(2)根據(jù)該中學(xué)的實際情況,需要從該體育用品商店一次性購買足球和籃球共20個.要求購買籃球數(shù)不少于足球數(shù)的2倍,總費用不超過1840元,那么這所中學(xué)有哪幾種購買方案?哪種方案所需費用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com