【題目】如圖,平行四邊形ABCD中,GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)F,連結(jié)CE,DF

1)求證:四邊形CEDF為平行四邊形;

2)若AB6cmBC10cm,∠B60°,

當(dāng)AE  cm時(shí),四邊形CEDF是矩形;

當(dāng)AE  cm時(shí),四邊形CEDF是菱形.

【答案】1)見(jiàn)解析;(274

【解析】

(1)根據(jù)平行四邊形的性質(zhì)得出CF平行ED,再根據(jù)三角形的判定方法判定CFG≌△EDG,從而得出FG=CG,根據(jù)平行四邊形的判定定理,即可判斷四邊形CEDF為平行四邊形.

(2)過(guò)AAMBCM,根據(jù)直角三角形邊角關(guān)系和平行四邊形的性質(zhì)得出DEBM,根據(jù)三角形全等的判定方法判斷△MBA≌△EDC,從而得出CED=∠AMB90°,根據(jù)矩形的判定方法,即可證明四邊形CEDF是矩形.

根據(jù)題意和等邊三角形的性質(zhì)可以判斷出CE=DE,再根據(jù)菱形的判定方法,即可判斷出四邊形CEDF是菱形.

1)證明:

∵四邊形ABCD是平行四邊形,

CFED,

∴∠FCD=∠GCD

GCD的中點(diǎn),

CGDG,

在△FCG和△EDG中,

∴△CFG≌△EDGASA),

FGEG,

∴四邊形CEDF是平行四邊形;

2解:當(dāng)AE7時(shí),平行四邊形CEDF是矩形,

理由是:過(guò)AAMBCM,

∵∠B60°,AB6,

BM3,

∵四邊形ABCD是平行四邊形,

∴∠CDA=∠B60°,DCAB6,BCAD10

AE7,

DE3BM,

在△MBA和△EDC中,,

∴△MBA≌△EDCSAS),

∴∠CED=∠AMB90°,

∵四邊形CEDF是平行四邊形,

∴四邊形CEDF是矩形,

故答案為:7

當(dāng)AE4時(shí),四邊形CEDF是菱形,

理由是:∵AD10,AE4

DE6,

CD6,∠CDE60°,

∴△CDE是等邊三角形,

CEDE,

∵四邊形CEDF是平行四邊形,

∴四邊形CEDF是菱形,

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣(mài)出200件;如果每件商品的售價(jià)每上漲1元.則每個(gè)月少賣(mài)10件.設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.

(1)求y與x的函數(shù)關(guān)系式;

(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

(3)若每個(gè)月的利潤(rùn)不低于2160元,售價(jià)應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D、E分別在△ABC的邊AC、BC上,線(xiàn)段BD與AE交于點(diǎn)F,且CDCA=CECB.

(1)求證:∠CAE=∠CBD;

(2)若,求證:ABAD=AFAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若買(mǎi)3根跳繩和6個(gè)毽子共72元;買(mǎi)1根跳繩和5個(gè)毽子共36元.

1)跳繩、毽子的單價(jià)各是多少元?

2)元旦促銷(xiāo)期間,所有商品按同樣的折數(shù)打折銷(xiāo)售,買(mǎi)10根跳繩和10個(gè)毽子只需180元,問(wèn)商品按原價(jià)的幾折銷(xiāo)售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線(xiàn)AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線(xiàn)段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是直線(xiàn)y=x+4與坐標(biāo)軸的交點(diǎn),直線(xiàn)y=-2x+b過(guò)點(diǎn)B,與x軸交于點(diǎn)C

1)求AB,C三點(diǎn)的坐標(biāo);

2)點(diǎn)D是折線(xiàn)ABC上一動(dòng)點(diǎn).

①當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),在x軸上找一點(diǎn)E,使ED+EB的和最小,用直尺和圓規(guī)畫(huà)出點(diǎn)E的位置(保留作圖痕跡,不要求寫(xiě)作法和證明),并求E點(diǎn)的坐標(biāo).

②是否存在點(diǎn)D,使△ACD為直角三角形,若存在,直接寫(xiě)出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,6)、B(9,一3),以原點(diǎn)O為位似中心,相似比為,把ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(2,0),以A為圓心作⊙Ay軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過(guò)B⊙A的切線(xiàn)l.

(1)以直線(xiàn)l為對(duì)稱(chēng)軸的拋物線(xiàn)過(guò)點(diǎn)A,拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為點(diǎn)C,拋物線(xiàn)的頂點(diǎn)為點(diǎn)E,如果CO=2BE,求此拋物線(xiàn)的解析式;

(2)過(guò)點(diǎn)C⊙A的切線(xiàn)CD,D為切點(diǎn),求此切線(xiàn)長(zhǎng);

(3)點(diǎn)F是切線(xiàn)CD上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFC△CAD相似時(shí),求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,D是等邊三角形ABC外一點(diǎn),,點(diǎn)EF分別在

1)求證:ADBC的垂直平分線(xiàn)

2)若ED平分,求證FD平分

查看答案和解析>>

同步練習(xí)冊(cè)答案