【題目】已知,如圖Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P為AC的中點(diǎn),Q從點(diǎn)A運(yùn)動(dòng)到B,點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止,連接PQ,取PQ的中點(diǎn)O,連接OC,OB.
(1)若△ABC∽△APQ,求BQ的長(zhǎng);
(2)在整個(gè)運(yùn)動(dòng)過程中,點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)_____;
(3)以O為圓心,OQ長(zhǎng)為半徑作⊙O,當(dāng)⊙O與AB相切時(shí),求△COB的面積.
【答案】(1)BQ=8.2cm;(2)5cm;(3)S△BOC=.
【解析】
(1)根據(jù)得,從而得到的長(zhǎng)即可求出的長(zhǎng);
(2)由點(diǎn)與點(diǎn)重合和點(diǎn)與點(diǎn)重合時(shí),可以確定點(diǎn)的位置,再根據(jù)點(diǎn)位于上除端點(diǎn)外的任意一點(diǎn)時(shí),由點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn)可知是的中位線,從而得到點(diǎn)的運(yùn)動(dòng)軌跡是的 中位線,即線段,即可求得答案;
(3)連接,過點(diǎn)作 ,先證明得到 ,所以求得的值,且,再證明得到,求得的值,再根據(jù)即可求得答案;
解:(1)如圖1所示,
∵
∴
又∵點(diǎn)P為AC的中點(diǎn),
∴
∵
∴ ,即
解之得:
則
(2)如圖2,
當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),點(diǎn)O位于點(diǎn)E的位置,
當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),點(diǎn)O位于點(diǎn)F的位置,
則EF是△APB的中位線,
∴EF∥AB,且EF=AB=5,
而當(dāng)點(diǎn)Q位于AB上除端點(diǎn)外的任意一點(diǎn)時(shí),
∵點(diǎn)O是PQ中點(diǎn),點(diǎn)F是PB的中點(diǎn),
∴OF是△PBQ的中位線,
∴OF∥BQ,
∴點(diǎn)O的運(yùn)動(dòng)軌跡是線段EF,
則點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)是5cm;
故答案為:5cm.
(3)如圖3,連接 ,過點(diǎn)O作于點(diǎn)N,
∵⊙O與AB相切,
∴ ,即 ,
∵
∴
∴ ,即
解之得:
則
∵
∴
又∵
∴,
∴ ,即 ,
解之得:
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點(diǎn)為半徑OA上異于O點(diǎn)和A點(diǎn)的一個(gè)點(diǎn),過P點(diǎn)作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點(diǎn),連接AE、DE、AE交CD于F點(diǎn).
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請(qǐng)猜想PF與FD的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(0,4),(﹣3,0),E為AB的中點(diǎn),EF∥AO交OB于點(diǎn)F,AF與EO交于點(diǎn)P,則EP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( )
A. 若點(diǎn)(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 過圖象上任一點(diǎn)P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=x和y=﹣x成軸對(duì)稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極配合我市文明城市創(chuàng)建,居委會(huì)組織了兩個(gè)檢查組,分別對(duì)轄區(qū)內(nèi)新華園、清華園、德才園、御花園四個(gè)小區(qū)“垃圾分類”和“違規(guī)停車”的情況進(jìn)行抽查,每個(gè)檢查組隨機(jī)抽取轄區(qū)內(nèi)的一個(gè)小區(qū)進(jìn)行檢查.
(1)“違規(guī)停車”檢查組抽到新華園小區(qū)的概率為_____;
(2)求兩個(gè)組恰好同時(shí)抽到御花園小區(qū)進(jìn)行檢查的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點(diǎn)A作AD∥OC,交BC的延長(zhǎng)線于D,AB交OC于E,∠ABC=45°.
(1)求證:AD是⊙O的切線;
(2)若AE=,CE=3.
①求⊙O的半徑;
②求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的六個(gè)角都是120°,邊長(zhǎng)AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個(gè)六邊形的周長(zhǎng)是:__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0),與y軸交于點(diǎn)C,對(duì)稱軸直線x=2與x軸相交于點(diǎn)D,點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),以每秒1個(gè)單位長(zhǎng)度的速度從拋物線的頂點(diǎn)E向下運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)點(diǎn)B的坐標(biāo)為 ,拋物線的解析式是 ;
(2)求當(dāng)t為何值時(shí),△PAC的周長(zhǎng)最。
(3)當(dāng)t為何值時(shí),△PAC是以AC為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小章為學(xué)校舉辦的數(shù)學(xué)文化節(jié)沒計(jì)的標(biāo)志,在△ABC中,∠ACB=90°,以△ABC的各邊為邊作三個(gè)正方形,點(diǎn)G落在HI上,若AC+BC=6,空自部分面積為10.5,則陰影部分面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com