【題目】如圖,在等邊三角形ABC中,AD⊥BC于點D,BD=2,以AD為一邊向右作等邊三角形ADE.
(1)求△ABC的周長;
(2)判斷AC、DE的位置關系,并給出證明.
【答案】(1)12;(2)AC⊥DE,理由見解析
【解析】
(1)根據(jù)等邊三角形的性質求得BD=CD=2,即可求得BC=4,所以△ABC為邊長為4的正三角形,從而求出三角形的周長;
(2)根據(jù)等邊三角形的性質求得∠C=∠ADE=60°,再求出∠CDE=30°,從而得到∠CFD=90°即可得出結論.
解:(1)∵在等邊△ABC中,AD⊥BC,BD=2,
∴BD=CD=2,
∴BC=BD+CD=4,
∴等邊△ABC的周長為:AB+BC+CA=3BC=12;
(2)AC、DE的位置關系:AC⊥DE.
∵△ABC和△ADE是等邊三角形,
∴∠C=60°,∠ADE=60°,
∵AD⊥BC,
∴∠ADC=90°,
在△CDF中,∵∠CDE=90°﹣∠ADE=30°,
∴∠CFD=180°﹣∠C﹣∠CDE=180°﹣60°﹣30°=90°.
∴AC⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,BC2,∠BAC30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論: ①若C,O兩點關于AB對稱,則OA;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為.
其中正確的是( )
A. ①② B. ①②③ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,BE平分∠ABC,DE∥BC.
(1)試猜想△BDE的形狀,并說明理由;
(2)若∠A=35°,∠C=70°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,與和分別相切于點和點,點和點分別是和上的動點,沿和平移,若的半徑為,,則下列結論不正確的是( )
A. 和的距離為 B. 當與相切時,
C. D. 當時,與相切
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“靈動三角形”.如,三個內角分別為120°,40°,20°的三角形是“靈動三角形”.
如圖,∠MON=60°,在射線OM上找一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(規(guī)定0°< ∠OAC < 90°).
(1)∠ABO的度數(shù)為 °,△AOB (填“是”或“不是”靈動三角形);
(2)若∠BAC=60°,求證:△AOC為“靈動三角形”;
(3)當△ABC為“靈動三角形”時,求∠OAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,C分別在線段NM,NA上,在△ABC中,∠A∶∠ABC∶∠BCA=3∶5∶10,且△ABC≌△MNC,則∠BCM∶∠NBA等于( )
A.1∶2B.1∶3C.1∶4D.1∶5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E.
(1)當∠BAC為銳角時,如圖①,求證:∠CBE=∠BAC;
(2)當∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點E,(1)中的結論是否仍然成立?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com