【題目】某社區(qū)組織“獻(xiàn)愛(ài)心”捐款活動(dòng),并對(duì)部分捐款戶數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì),數(shù)據(jù)整理成如下統(tǒng)計(jì)圖表(圖中信息不完整).
捐款戶數(shù)分組統(tǒng)計(jì)表
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<100 | 2 |
B | 100≤x<200 | 10 |
C | 200≤x<300 | c |
D | 300≤x<400 | d |
E | x≥400 | e |
請(qǐng)結(jié)合以上信息解答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是______;
(2)d=______,并補(bǔ)全圖1;
(3)圖2中,“B”所對(duì)應(yīng)扇形的圓心角為______度;
(4)若該社區(qū)有500戶住戶,根據(jù)以上信息估計(jì)全社區(qū)捐款不少于300元的戶數(shù)是______.
【答案】(1)50;(2)14;補(bǔ)圖見(jiàn)解析;(3)72;(4)180戶.
【解析】
(1)由條形圖中C組戶數(shù)及扇形圖中其對(duì)應(yīng)百分比可得總戶數(shù);
(2)總戶數(shù)乘以D組百分比可得;
(3)用360°乘以B組戶數(shù)所占百分比可得;
(4)總戶數(shù)乘以樣本中D、E組的百分比之和可得.
(1)本次調(diào)查的樣本容量為20÷40%=50,
故答案為:50;
(2)d=50×28%=14,
補(bǔ)全圖1如下:
故答案為:14;
(3)圖2中,“B”所對(duì)應(yīng)扇形的圓心角為360°×=72°,
故答案為:72;
(4)估計(jì)全社區(qū)捐款不少于300元的戶數(shù)是500×(28%+8%)=180戶,
故答案為:180戶.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級(jí)二班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”、“繪畫類”、“舞蹈類”、“音樂(lè)類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為 人,參加球類活動(dòng)的人數(shù)的百分比為 ;
(2)請(qǐng)把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為 ;
(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示的雙曲線是函數(shù)(m為常數(shù),x>0)圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與一次函數(shù)y=x+1的圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,扇形AOB中,∠AOB=120°,OA=2,若以A為圓心,OA長(zhǎng)為半徑畫弧交弧AB于點(diǎn)C,過(guò)點(diǎn)C作CD⊥OA,垂足為D,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示拋物線過(guò)點(diǎn),點(diǎn),且
(1)求拋物線的解析式及其對(duì)稱軸;
(2)點(diǎn)在直線上的兩個(gè)動(dòng)點(diǎn),且,點(diǎn)在點(diǎn)的上方,求四邊形的周長(zhǎng)的最小值;
(3)點(diǎn)為拋物線上一點(diǎn),連接,直線把四邊形的面積分為3∶5兩部分,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-x+1與x軸.y軸分別交于A.B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B,且與直線AB的另一交點(diǎn)為C(4,n).
(1)求n的值及該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t(0<t<4),過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,作PE∥y軸交直線AB于點(diǎn)E,
①y軸上存在點(diǎn)Q,使得四邊形QEPB是矩形,請(qǐng)求出點(diǎn)Q的坐標(biāo);
②求線段PD的長(zhǎng)的最大值;
③當(dāng)t為何值時(shí),點(diǎn)D為BE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長(zhǎng)CB、DA交于P,過(guò)C點(diǎn)作PD的垂線交PD的延長(zhǎng)線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),點(diǎn),直線,直線,直線經(jīng)過(guò)拋物線的頂點(diǎn),且與相交于點(diǎn),直線與軸、軸分別交于點(diǎn)、,若把拋物線上下平移,使拋物線的頂點(diǎn)在直線上(此時(shí)拋物線的頂點(diǎn)記為),再把拋物線左右平移,使拋物線的頂點(diǎn)在直線上(此時(shí)拋物線的頂點(diǎn)記為).
(1)求拋物線的解析式.
(2)判斷以點(diǎn)為圓心,半徑長(zhǎng)為4的圓與直線的位置關(guān)系,并說(shuō)明理由.
(3)設(shè)點(diǎn)、在直線上(點(diǎn)在點(diǎn)的下方),當(dāng)與相似時(shí),求、的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無(wú)解,則這樣的非負(fù)整數(shù)a有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com