矩形ABCO的面積為10,OA比OC大3,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D,DF⊥AE于F.
(1)求OA、OC的長(zhǎng).
(2)求DF長(zhǎng);
(3)P為邊BC上一動(dòng)點(diǎn),設(shè)△ABP的面積為x,△OPC的面積為y,求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(4)直線BC上是否存在點(diǎn)Q,使∠AQO=90°?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(1)設(shè)OC=x,則OA=x+3,
由題意得:x(x+3)=10,
即(x-2)(x+5)=0,
解得:x=2,x=-5(舍去),
∴OA=5,OC=2;

(2)∵E為BC的中點(diǎn),得到D為AD中點(diǎn),且BC=5,AB=2,
∴AD=BE=2.5,根據(jù)勾股定理得:AE=
22+2.52
=
41
2

∵矩形ABCD,∴BCAD,
∴∠BEA=∠EAD,又∠B=∠AFD=90°,
∴△ABE△DFA,
AB
DF
=
AE
AD
,
則DF=
10
41
41
;

(3)∵S矩形ABCD=S△AED
∴S△ABP+S△OCP=
1
2
S矩形ABCD,即x+y=5,
則y=5-x(0<x<5);

(4)存在.畫出圖形,如圖所示:
當(dāng)AQ⊥QO時(shí),∠AQB+∠CQD=90°,
∵∠AQB+∠BQA=90°,
∴∠CQD=∠BAQ,
又∠B=∠DCQ=90°,
∴△ABQ△QCD,∴
BQ
CD
=
AB
QC
,設(shè)BQ=a,則QC=5-a,
a
2
=
2
5-a
,即(a-1)(a-4)=0,
解得:a=1或a=4,
當(dāng)BQ=a=1時(shí),點(diǎn)Q坐標(biāo)為(-4,2);
當(dāng)BQ=a=4時(shí),點(diǎn)Q坐標(biāo)為(-1,2),
綜上,Q坐標(biāo)為(-1,2)或(-4,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是⊙O的弦(不是直徑),C、D為弦AB上兩點(diǎn),且OC=OD,延長(zhǎng)OC,CD,分別交⊙O與點(diǎn)E、F,證明:
AE
=
BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,∠C=45°,AB=2,則⊙O的半徑為( 。
A.1B.2
2
C.2D.
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,AB=2CD,那么(  )
A.
AB
>2
CD
B.
AB
<2
CD
C.
AB
=2
CD
D.
AB
2
CD
的大小關(guān)系無法比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在⊙O中,弦ABCD,若∠BOD=80°,則∠ABC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O中,弦ADBC,DA=DC,∠AOC=160°,則∠BCO等于( 。
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的直徑AB=8,P是上半圓(A、B除外)上任一點(diǎn),∠APB的平分線交⊙O于C,弦EF過AC、BC的中點(diǎn)M、N,則EF的長(zhǎng)是( 。
A.4
3
B.2
3
C.6D.2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在⊙O中,弦AB所對(duì)的圓周角之間的關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O中,弦AB、CD相交于點(diǎn)E,寫出圖中三對(duì)相等的角為:______、______、______.

查看答案和解析>>

同步練習(xí)冊(cè)答案