精英家教網 > 初中數學 > 題目詳情
一直線y1=x+b與拋物線y2=x2+c的交點為A(3,5)和B.
(1)求出b、c和點B的坐標;
(2)畫出草圖,根據圖象同答:當x在什么范圍時y1≤y2?
(1)∵y1=x+b與拋物線y2=x2+c的交點為A(3,5)和B.
∴將A(3,5)分別代入y1=x+b與y2=x2+c求出:
b=2,c=-4,
y=x+2
y=x2-4

x=3
y=5
,或
x=-2
y=0

∴B(-2,0);

(2)如圖所示,結合圖象即可得出,
當x≤-2,或x≥3時,y1≤y2
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,OA=OC,AB=4,tan∠BCO=
1
5
,二次函數y=ax2+bx+c圖象經過A、B、C三點.
(1)求A,B,C三點的坐標;
(2)求二次函數的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=ax2+bx+c的圖象經過點A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函數的解析式;
(2)設此二次函數的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關于直線l的對稱點為M,點M關于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

明珠大劇場座落在聊城東昌湖西岸,其上部為能夠旋轉的拱形鋼結構,并且具有開啟、閉合功能,全國獨-無二,如圖1.舞臺頂部橫剖面拱形可近似看作拋物線的一部分,其中舞臺高度1.15米,臺口高度13.5米,臺口寬度29米,如圖2.以ED所在直線為x軸,過拱頂A點且垂直于ED的直線為y軸,建立平面直角坐標系.
(1)求拱形拋物線的函數關系式;
(2)舞臺大幕懸掛在長度為20米的橫梁MN上,其下沿恰與舞臺面接觸,求大幕的高度?(精確到0.01米)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

用長為100cm的鐵絲做一個矩形框子.
(1)能做成矩形框的面積為800cm2嗎?如果能求出長和寬,如果不能請說明理由.
(2)請說明能圍成的矩形最大面積是多少?為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某工廠準備翻建新的廠門,廠門要求設計成軸對稱的拱型曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的特種運輸卡車的高度是3m,寬度是5.8m.現設計了兩種方案:方案一:建成拋物線形狀;方案二:建成圓弧形狀(如圖).為確保工廠的特種卡車在通過廠門時更安全,你認為應采用哪種設計方案?請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數y=-x2+(a+1)x+6的圖象經過點B,求這個二次函數的解析式,并寫出使二次函數值小于一次函數y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

兩塊完全相同的直角三角板ABC和DEF如圖1所示放置,點C、F重合,且BC、DF在一條直線上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不動,讓Rt△DEF沿CB向左平移,直到點F和點B重合為止.設FC=x,兩個三角形重疊陰影部分的面積為y.
(1)如圖2,求當x=
1
2
時,y的值是多少?
(2)如圖3,當點E移動到AB上時,求x、y的值;
(3)求y與x之間的函數關系式.

查看答案和解析>>

同步練習冊答案