如圖,拋物線y=x2-2x-3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
【答案】分析:(1)因?yàn)閽佄锞與x軸相交,所以可令y=0,解出A、B的坐標(biāo).再根據(jù)C點(diǎn)在拋物線上,C點(diǎn)的橫坐標(biāo)為2,代入拋物線中即可得出C點(diǎn)的坐標(biāo).再根據(jù)兩點(diǎn)式方程即可解出AC的函數(shù)表達(dá)式;
(2)根據(jù)P點(diǎn)在AC上可設(shè)出P點(diǎn)的坐標(biāo).E點(diǎn)坐標(biāo)可根據(jù)已知的拋物線求得.因?yàn)镻E都在垂直于x軸的直線上,所以兩點(diǎn)之間的距離為yp-yE,列出方程后結(jié)合二次函數(shù)的性質(zhì)即可得出答案;
(3)存在四個這樣的點(diǎn).

①如圖,連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時AF=CG=2,因此F點(diǎn)的坐標(biāo)是(-3,0);

②如圖,AF=CG=2,A點(diǎn)的坐標(biāo)為(-1,0),因此F點(diǎn)的坐標(biāo)為(1,0);

③如圖,此時C,G兩點(diǎn)的縱坐標(biāo)關(guān)于x軸對稱,因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=-x+h,將G點(diǎn)代入后可得出直線的解析式為y=-x+7.因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+,0);

④如圖,同③可求出F的坐標(biāo)為(4-,0);
綜合四種情況可得出,存在4個符合條件的F點(diǎn).
解答:解:(1)令y=0,解得x1=-1或x2=3
∴A(-1,0)B(3,0)
將C點(diǎn)的橫坐標(biāo)x=2代入y=x2-2x-3得y=-3
∴C(2,-3)
∴直線AC的函數(shù)解析式是y=-x-1;

(2)設(shè)P點(diǎn)的橫坐標(biāo)為x(-1≤x≤2)
則P、E的坐標(biāo)分別為:P(x,-x-1)
E(x,x2-2x-3)
∵P點(diǎn)在E點(diǎn)的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-2+
∴當(dāng)時,PE的最大值=

(3)存在4個這樣的點(diǎn)F,分別是F1(1,0),F(xiàn)2(-3,0),F(xiàn)3(4+,0),F(xiàn)4(4-,0).

①如圖,連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時AF=CG=2,因此F點(diǎn)的坐標(biāo)是(-3,0);

②如圖,AF=CG=2,A點(diǎn)的坐標(biāo)為(-1,0),因此F點(diǎn)的坐標(biāo)為(1,0);

③如圖,此時C,G兩點(diǎn)的縱坐標(biāo)關(guān)于x軸對稱,因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=-x+h,將G點(diǎn)代入后可得出直線的解析式為y=-x+4+.因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+,0);

④如圖,同③可求出F的坐標(biāo)為(4-,0).
綜合四種情況可得出,存在4個符合條件的F點(diǎn).
點(diǎn)評:本題著重考查了待定系數(shù)法求一次函數(shù)解析式、平行四邊形的判定、二次函數(shù)的性質(zhì)等重要知識點(diǎn),綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請求一個滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點(diǎn),過點(diǎn)M作x軸的垂線MG,垂足為G,過點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊答案