【題目】已知x、y、z為有理數(shù),且|x+y+z+1|=x+yz﹣2,則=____________

【答案】0

【解析】

根據(jù)絕對值的意義得到|x+y+z+1|=x+y+z+1|x+y+z+1|=-(x+y+z+1),則x+y+z+1=x+y-z-2-(x+y+z+1)=x+y-z-2,解得z=-x+y=,然后把z=-x+y=分別代入(x+y)(2z+3)中計算即可.

|x+y+z+1|=x+y+z+1|x+y+z+1|=-(x+y+z+1),
x+y+z+1=x+y-z-2-(x+y+z+1)=x+y-z-2,
z=-x+y=,
當(dāng)z=-時,(x+y)(2z+3)=(x+y-)[2×(-)+3]=0;
當(dāng)x+y=時,(x+y)(2z+3)=(-)(2z+3)=0,
綜上所述,(x+y)(2z+3)的值為0.
故答案為:0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AH折疊,使得頂點B落在CD邊上的P點處.折痕與邊BC交于點 H,已知AD=8,HC:HB=3:5.

(1)求證:△HCP∽△PDA;
(2)探究AB與HB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連結(jié)BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的外心為O,內(nèi)心為I,∠BOC=120°,∠BIC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小青在本學(xué)期的數(shù)學(xué)成績?nèi)缦卤硭荆ǔ煽兙≌麛?shù)):

(1)計算小青本學(xué)期的平時平均成績;

(2)如果學(xué)期的總評成績是根據(jù)圖所示的權(quán)重計算,那么本學(xué)期小青的期末考試成績x至少為多少分才能保證達到總評成績90分的最低目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,易知P,請補充完整證明過程:

證明:過點P

已作

____________

____________

變式:

如圖是直線EF上的兩點,猜想這四個角之間的關(guān)系,并直接寫出以下三種情況下這四個角之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長沙市某家小型“大學(xué)生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.

(1)如圖1,當(dāng)點E、F在線段AD上時,求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,一蔬菜經(jīng)營戶用114元從蔬菜批發(fā)市場購進黃瓜和土豆共40kg到菜市場去賣,黃瓜和土豆這天的批發(fā)價和零售價(單位:元/kg)如下表所示:

(1)他當(dāng)天購進黃瓜和土豆各多少千克?

(2)如果黃瓜和土豆全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應(yīng)同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計圖:
設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若n=9,求y與x的函數(shù)關(guān)系式;
(2)若要使這30支水彩筆“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設(shè)這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯所需費用的平均數(shù),以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應(yīng)購買9個還是10個筆芯.

查看答案和解析>>

同步練習(xí)冊答案