【題目】已知∠AOB=30°,P是OA上的一點,OP=24cm,以r為半徑作⊙P.
(1)若r=12cm,試判斷⊙P與OB位置關系;
(2)若⊙P與OB相離,試求出r需滿足的條件.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,當一個點到達終點時另一個點也停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設運動時間為t秒,則當t=______秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清明小長假是廣大游客走出家門放松心情、感受祖國大好河山的好時機,為豐富游客出行體驗,小長假前夕,遵義市啟動了2018年“醉美遵義,四季主題游”之春季踏青賞花游。三天假期,遵義市共接待游客230.11萬人次,實現(xiàn)旅游綜合收入12.66億元,把12.66億用科學計數(shù)法表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=x+|x﹣2|的圖象與性質
小明根據(jù)學習函數(shù)的經驗,對函數(shù)y=x+|x﹣2|的圖象與性質進行了探究
下面是小明的探究過程,請補充完成:
(1)化簡函數(shù)解析式,當x≥2時,y= ;當x<2時,y= ;
(2)根據(jù)(1)中的結果,請在圖1的坐標系中畫出函數(shù)y=x+|x﹣2|的圖象;
(3)結合函數(shù)的圖象,寫出該函數(shù)的一條性質: ;
(4)結合畫出的函數(shù)圖象,利用圖2解決問題,若關于x的方程ax+1=x+|x﹣2|有兩個實數(shù)根,直接寫出實數(shù)a的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,線段,若點A在y軸上滑動,點B隨著線段AB在射線x軸上滑動,(A、B與O不重合),Rt△AOB的內切⊙K分別與OA、OB、AB切于E、F、P.
(1)在上述變化過程中:Rt△AOB的周長,⊙K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由;
(2)當時,求⊙K的半徑r;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分線與AB的垂直平分線交于點O,點E、F分別在BC、AC上,點C沿EF折疊后與點O重合,則∠BEO的度數(shù)是( )
A. 20° B. 35° C. 40° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com