【題目】如圖,△ABC是等腰三角形,ABAC,分別以?xún)裳鼮檫呄颉?/span>ABC外作等邊三角形ADB和等邊三角形ACE 若∠DAE=∠DBC,求∠BAC的度數(shù).

【答案】BAC的度數(shù)為20°

【解析】

根據(jù)等邊三角形各內(nèi)角為60°,等腰三角形底角相等,三角形內(nèi)角和為180°、∠DAE=DBC即可120°+BAC=60°+ABC,即可解題.

解:∵△ADBACE是等邊三角形,

∴∠DAB=∠DBA=CAE=60°

∴∠DAE60°+∠BAC60°120°+∠BAC,

∴∠DBC60°+∠ABC,

又∵∠DAE=∠DBC

120°+∠BAC60°+∠ABC,

即∠ABC60°+∠BAC

∵△ABC是等腰三角形,

∴∠ABC=∠ACB60°+∠BAC

設(shè)∠BAC的度數(shù)為x,

x2(x60°)180°,

解得x20°,

∴∠BAC的度數(shù)為20°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店準(zhǔn)備購(gòu)進(jìn)A、B兩種型號(hào)的書(shū)包共50個(gè)進(jìn)行銷(xiāo)售,兩種書(shū)包的進(jìn)價(jià)、售價(jià)如下表所示:

書(shū)包型號(hào)

進(jìn)價(jià)(元/個(gè))

售價(jià)(元/個(gè))

A

200

300

B

100

150

購(gòu)進(jìn)這50個(gè)書(shū)包的總費(fèi)用不超過(guò)7300元,且購(gòu)進(jìn)B型書(shū)包的個(gè)數(shù)不大于A型書(shū)包個(gè)數(shù)的

1)該文具店有哪幾種進(jìn)貨方案?

2)若該文具店購(gòu)進(jìn)的50個(gè)書(shū)包全部售完,則該文具店采用哪種進(jìn)貨方案,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖攔水壩的橫斷面為等腰梯形ABCD,壩頂寬BC6 m壩高為3.2 m,為了提高水壩的攔水能力需要將水壩加高2 m并且保持壩頂寬度不變,迎水坡CD的坡度不變但是背水坡的坡度由原來(lái)的12變成12.5(坡度是坡高與坡的水平長(zhǎng)度的比)求加高后的壩底HD的長(zhǎng)為多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,把4個(gè)長(zhǎng)為a,寬為b的長(zhǎng)方形拼成如圖②所示的圖形,且a=3b,則根據(jù)這個(gè)圖形不能得到的等式是(

A.(a+b)2=4ab+(a-b)2B.4b2+4ab=(a+b)2

C.(a-b)2=16b2-4abD.(a-b)2+12a2=(a+b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A、B、C、D在數(shù)軸上的位置如圖1所示,已知AB=3,BC=2,CD=4.

(1)若點(diǎn)C為原點(diǎn),則點(diǎn)A表示的數(shù)是   ;

(2)若點(diǎn)A、B、C、D分別表示有理數(shù)a,b,c,d,則|a﹣c|+|d﹣b|﹣|a﹣d|=   

(3)如圖2,點(diǎn)P、Q分別從A、D兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿線(xiàn)段AB以每秒1個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),到達(dá)B點(diǎn)后立即按原速折返;點(diǎn)Q沿線(xiàn)段CD以每秒2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),到達(dá)C點(diǎn)后立即按原速折返.當(dāng)P、Q中的某點(diǎn)回到出發(fā)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

①當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),求點(diǎn)P、Q之間的距離;

②設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒),則t為何值時(shí),PQ=5?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=2x2+bx﹣1.

(1)求證:無(wú)論b取什么值,二次函數(shù)y=2x2+bx﹣1圖象與x軸必有兩個(gè)交點(diǎn).

(2)若兩點(diǎn)P(﹣3,m)和Q(1,m)在該函數(shù)圖象上.

①求b、m的值;

②將二次函數(shù)圖象向上平移多少單位長(zhǎng)度后,得到的函數(shù)圖象與x軸只有一個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

閱讀以下材料:

定義:兩邊分別相等且?jiàn)A角互補(bǔ)的兩個(gè)三角形叫做“互補(bǔ)三角形”.

用符號(hào)語(yǔ)言表示為:如圖①,在△ABC與△DEF中,如果AC=DE,∠C+E=180°,BC=EF,那么△ABC與△DEF是互補(bǔ)三角形.

反之,“如果△ABC與△DEF是互補(bǔ)三角形,那么有AC=DE,∠C+E=180°,BC=EF”也是成立的.

自主探究

利用上面所學(xué)知識(shí)以及全等三角形的相關(guān)知識(shí)解決問(wèn)題:

1)性質(zhì):互補(bǔ)三角形的面積相等

如圖②,已知△ABC與△DEF是互補(bǔ)三角形.

求證:△ABC與△DEF的面積相等.

證明:分別作△ABC與△DEF的邊BCEF上的高線(xiàn),則∠AGC=DHE=90°

…… (將剩余證明過(guò)程補(bǔ)充完整)

2)互補(bǔ)三角形一定不全等,請(qǐng)你判斷該說(shuō)法是否正確,并說(shuō)明理由,如果不正確,請(qǐng)舉出一個(gè)反例,畫(huà)出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).

1)求出bc的值,并寫(xiě)出此二次函數(shù)的解析式;

2)根據(jù)圖象,寫(xiě)出函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線(xiàn)由拋物線(xiàn)的一部分ACB

矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED16m,AE8m,拋物線(xiàn)的頂點(diǎn)CED

距離是11m,以ED所在的直線(xiàn)為x軸,拋物線(xiàn)的對(duì)稱(chēng)軸為y軸建立平面直角坐標(biāo)系.

(1)求拋物線(xiàn)的解析式;

(2)已知從某時(shí)刻開(kāi)始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時(shí)間t(單位:h)的變化滿(mǎn)足函數(shù)

關(guān)系且當(dāng)水面到頂點(diǎn)C的距離不大于5m時(shí),需禁止船只通行,請(qǐng)通過(guò)計(jì)算說(shuō)明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?

查看答案和解析>>

同步練習(xí)冊(cè)答案