如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠BAC=20°,求∠P的度數(shù)為( )

A.50°
B.70°
C.110°
D.40°
【答案】分析:根據(jù)切線性質(zhì)得出PA=PB,∠PAO=90°,求出∠PAB的度數(shù),得出∠PAB=∠PBA,根據(jù)三角形的內(nèi)和定理求出即可.
解答:解:∵PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,
∴∠CAP=90°,PA=PB,
∴∠PAB=∠PBA,
∵∠BAC=20°,
∴∠PBA=∠PAB=90°-20°=70°,
∴∠P=180°-∠PAB-∠PBA=180°-70°-70°=40°,
故選D.
點評:本題考查了切線長定理,切線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運用定理進行推理和計算的能力,題目具有一定的代表性,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習(xí)冊答案