(1)如圖,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.
(1)證明:在正方形ABCD中,
∴∠ABE=∠ADG,AD=AB,
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∴∠EAG=90°,
在△FAE和△GAF中,
,
∴△FAE≌△GAF(SAS),
∴EF=FG
(2)解:如圖2,過點C作CE⊥BC,垂足為點C,截取CE,使CE=BM.連接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
∴MN2=BM2+NC2.
∵BM=1,CN=3,
∴MN2=12+32,
∴MN=
科目:初中數(shù)學(xué) 來源: 題型:
如圖,某同學(xué)用一扇形紙板為一個玩偶制作一個圓錐形帽子,已知扇形半徑OA=13cm,扇形的弧長為10πcm,那么這個圓錐形帽子的高是( )cm.(不考慮接縫)
A.5 B.12 C.13 D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點),已知EF=CD=8,則⊙O的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問題.
(1)A比B后出發(fā)幾個小時?B的速度是多少?
(2)在B出發(fā)后幾小時,兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,AB=3,AD=4,E為AB上一點,AE=1,M為射線AD上一動點,AM=a(a為大于0的常數(shù)),直線EM與直線CD交于點F,過點M作MG⊥EM,交直線BC于G.
(1)若M為邊AD中點,求證:△EFG是等腰三角形;
(2)若點G與點C重合,求線段MG的長;
(3)請用含a的代數(shù)式表示△EFG的面積S,并指出S的最小整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com