精英家教網 > 初中數學 > 題目詳情

【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1S2,S3,,S10,則S1+S2+S3+…+S10=

【答案】p.

【解析】

試題(1)圖1,作輔助線構建正方形OECF,設圓O的半徑為r,根據切線長定理表示出ADBD的長,利用AD+BD=5列方程求出半徑=1a、b是直角邊,c為斜邊),運用圓面積公式=πr2求出面積;

2)圖2,先求斜邊上的高CD的長,再由勾股定理求出ADBD,利用半徑a、b是直角邊,c為斜邊)求兩個圓的半徑分別是,從而求出兩圓的面積和;

3)圖3,繼續(xù)求高DMCM、BM,利用半徑a、b是直角邊,c為斜邊)求三個圓的半徑分別是,從而求出三個圓的面積和;

綜上所述:發(fā)現S1+S2+S3+…+S10

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】RtABC中,∠A30°,在AB邊上取點D,以BD為直徑作O,與AC邊切于點F,交BC邊于點E

1)若BC3,求O的半徑;

2連接OF、EF,則四邊形OFEB的形狀為   ;

寫出你的推斷過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某燈飾商店銷售一種進價為每件20元的護眼燈.銷售過程中發(fā)現,每月銷售量(件)與銷售單價(元)之間的關系可近似地看作一次函數.物價部門規(guī)定該品牌的護眼燈售價不能超過36.

1)如果該商店想要每月獲得2000元的利潤,那么銷售單價應定為多少元?

2)設該商店每月獲得利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?最大利潤為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點 A 逆時針旋轉得到矩形 AEFG,AE,FG 分別交射線CD 于點 PH,連結 AH,若 P CH 的中點,則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線經過點O0,0)與點A4,0),頂點為點P,且最小值為-2

1)求拋物線的表達式;

2)過點OPA的平行線交拋物線對稱軸于點M,交拋物線于另一點N,求ON的長;

3)拋物線上是否存在一個點E,過點Ex軸的垂線,垂足為點F,使得EFO∽△AMN,若存在,試求出點E的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數yax2+bx+ca≠0)的圖象如圖,有下列5個結論:①abc0;②ba+c;③當x0時,yx的增大而增大;④2c3b;⑤a+bmam+b)(其中m≠1)其中正確的個數是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD的邊長為3,點E,F分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.

(1)如圖1,若點E是DC的中點,CH與AB之間的數量關系是

(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當點E,F分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,弦為半圓弧的中點,連,的平分線交于點.

1)求證:;

2)直接寫出的長

查看答案和解析>>

同步練習冊答案