(2008•建鄴區(qū)一模)平面上的點(diǎn)M關(guān)于直線l有唯一的軸對(duì)稱點(diǎn)M′,這樣平面上的任意一點(diǎn)就與該點(diǎn)關(guān)于這條直線的軸對(duì)稱點(diǎn)之間建立了一種對(duì)應(yīng)關(guān)系,我們把這種對(duì)應(yīng)關(guān)系叫做點(diǎn)M關(guān)于直線l的軸對(duì)稱變換,記為,點(diǎn)M的軸對(duì)稱點(diǎn)就記為M′(l),如圖(1)所示.如果先作平面上的點(diǎn)M關(guān)于直線l的軸對(duì)稱變換,得到對(duì)應(yīng)點(diǎn)M′(l),然后,再作M′(l)關(guān)于另外一條直線m的軸對(duì)稱變換,這樣點(diǎn)M就與該點(diǎn)關(guān)于直線l和m的軸對(duì)稱點(diǎn)M′′(l,m)之間建立了一種對(duì)應(yīng)關(guān)系,我們把這種對(duì)應(yīng)關(guān)系就叫做點(diǎn)M關(guān)于直線l和m的軸對(duì)稱變換,記為,M的對(duì)應(yīng)點(diǎn)就記為M′′(l,m).如圖(2),M是平面上的一點(diǎn),直線l、m相交所成的角為θ(0°<θ≤90°),且交點(diǎn)為O,請(qǐng)回答如下問題:
(1)在圖(2)中,求作M′(l)和M′′(l,m).(要求保留作圖痕跡)
(2)當(dāng)θ=______°時(shí),M與M′′(l,m)關(guān)于點(diǎn)O成中心對(duì)稱.
(A)30(B)45(C)60(D)90
(3)(在以下兩題中任選一題作答)
①試探討∠MOM′′(l,m)與θ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
②試探討OM與OM′′(l,m)間的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】分析:(1)應(yīng)先做M關(guān)于l的對(duì)稱點(diǎn)M′,再做M′關(guān)于m的對(duì)稱點(diǎn)M″.
(2)成中心對(duì)稱,應(yīng)和O在同一直線上,那么∠MOM''=180°,翻折兩次,可得到θ=90°.
(3)根據(jù)軸對(duì)稱的性質(zhì)作答即可.
解答:解:(1)每畫對(duì)一個(gè)給(2分).(4分)

(2)90°,故選D.(7分)

(3)①判斷:∠MOM″(l,m)=2∠θ.(8分)
證明:如圖(1),由軸對(duì)稱性質(zhì)可知,l垂直平分MM′(l),
則△OMM′(l)為等腰三角形.(10分)
∵∠1=∠2.同理∠3=∠4,(11分)
∴∠MOM″(l,m)=2∠θ.(12分)

②判斷:OM=OM″(l,m).
證明:如圖(2),連接OM、OM′(l)、OM″(l,m).
∵M(jìn),M′(l)關(guān)于直線l成軸對(duì)稱,
∴l(xiāng)是MM′(l)的垂直平分線.
∴OM=OM′(l).(10分)
同理可得:OM′(l)=OM″(l,m).(11分)
∴OM=OM″(l,m).(12分)

點(diǎn)評(píng):關(guān)于軸對(duì)稱的兩個(gè)圖形,各對(duì)應(yīng)點(diǎn)的連線被對(duì)稱軸垂直平分,可得到相應(yīng)的線段相等,角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省宿遷市實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2008•建鄴區(qū)一模)正方形紙片ABCD和BEFG的邊長(zhǎng)分別為5和2,按如圖所示的方式剪下2個(gè)陰影部分的直角三角形,并擺放成正方形DHFI,則正方形DHFI的邊長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬卷(6)(解析版) 題型:填空題

(2008•建鄴區(qū)一模)圖1、圖2是根據(jù)某地近兩年10月上旬日平均氣溫情況繪制的折線統(tǒng)計(jì)圖,通過觀察圖表,可以判斷這兩年10月上旬氣溫比較穩(wěn)定的年份是    年.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省南京市中考數(shù)學(xué)模擬卷(解析版) 題型:填空題

(2008•建鄴區(qū)一模)正方形紙片ABCD和BEFG的邊長(zhǎng)分別為5和2,按如圖所示的方式剪下2個(gè)陰影部分的直角三角形,并擺放成正方形DHFI,則正方形DHFI的邊長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案