【題目】二次函數(shù)(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>;④a-b+c>0;⑤若, 且, 則.其中正確的有( ).
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
【答案】D
【解析】
試題根據(jù)拋物線開口向下可得a<0,根據(jù)對(duì)稱軸為直線x=1,可得b=-2a,則b>0,與y軸的交點(diǎn)在x軸的上方,則c>0,所以abc<0,故①錯(cuò)誤;由b=-2a得2a+b=0,故②正確;因?yàn)?/span>x=1時(shí),函數(shù)值最大,所以a+b+c>+c,即a+b>(m≠1),故③正確;因?yàn)閽佄锞與x軸的交點(diǎn)到對(duì)稱軸的距離大于1,所以拋物線與x軸的交點(diǎn)一個(gè)在(2,0)與(3,0)之間,一個(gè)在(0,0)與(-1,0)之間,所以當(dāng)x=-1時(shí),y<0,即a-b+c<0,故④錯(cuò)誤;當(dāng)時(shí),則,所以x=與x=時(shí)的函數(shù)值相等,所以-1=1-,即,故⑤正確,綜上正確的結(jié)論有②③⑤.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是等邊△ABC的邊AC上一點(diǎn),以BD為邊作等邊△BDE,點(diǎn)C,E在BD同側(cè),下列結(jié)論:①∠ABD=30°;②CE∥AB;③CB平分∠ACE;④CE=AD,其中錯(cuò)誤的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖三角形ABC中,AB=3,AC=4,以BC為邊向三角形外作等邊三角形BCD,連AD,則當(dāng)∠BAC=_____度時(shí),AD有最大值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期學(xué)校開展以“感受中華傳統(tǒng)美德”為主題的研學(xué)活動(dòng),組織150名學(xué)生參觀歷史博物館和民俗展覽館,每一名學(xué)生只能參加其中一項(xiàng)活動(dòng),共支付票款2000元,票價(jià)信息如下:
地點(diǎn) | 票價(jià) |
歷史博物館 | 10元/人 |
民俗展覽館 | 20元/人 |
(1)請(qǐng)問參觀歷史博物館和民俗展覽館的人數(shù)各是多少人?
(2)若學(xué)生都去參觀歷史博物館,則能節(jié)省票款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過格點(diǎn)A、B、C作一圓。
(1)弧AC的長(zhǎng)為_____(結(jié)果保留π);
(2)點(diǎn)B與圖中格點(diǎn)的連線中,能夠與該圓弧相切的連線所對(duì)應(yīng)的格點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE與CD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線,EF與CD交于點(diǎn)M,CF與BE交于點(diǎn)N.
(1)若∠D=70°,∠BED=30°,則∠EMA= (度);
(2)若∠B=60°,∠BCD=40°,則∠ENC= (度);
(3)∠F與∠B、∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,、是的三等分點(diǎn),過點(diǎn)、、分別作的垂線,垂足分別為、、,連接、,分別交、于、,記的面積為,的面積為,的面積為,則的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:①△DFE是等腰直角三角形;②DE長(zhǎng)度的最小值為4;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結(jié)論是( )
A.①②③B.①③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為x.
(1)則今年南瓜的種植面積為 畝;(用含x的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com