【題目】僅用無刻度的直尺,按要求畫圖(保留畫圖痕跡,不寫作法)
(1)如圖①,畫出⊙O的一個內(nèi)接矩形;
(2)如圖②,AB是⊙O的直徑,CD是弦,且AB∥CD,畫出⊙O的內(nèi)接正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系,△ABC的頂點均在格點上.(不寫作法)
(1)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出B1的坐標;
(2)再把△A1B1C1繞點C1 順時針旋轉90°,得到△A2B2C1,請你畫出△A2B2C1,并寫出B2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一“過關游戲”,規(guī)定:在第n關要擲一顆骰子n次,如果這n次拋擲所出現(xiàn)的點數(shù)之和大于 ,則算過關,否則不算過關.
(1)過第1關是事件(填“必然”、“不可能”或“不確定”,后同),過第4關是事件;
(2)當n=2時,計算過過第二關的概率(可借助表格或樹狀圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菲爾茲獎是國際上有崇高聲譽的一個數(shù)學獎項,下面的數(shù)據(jù)是從1936年至2014年菲爾茲獎得主獲獎時的年齡(歲): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
請根據(jù)上述數(shù)據(jù),解答下列問題:
小彬按“組距為5”列出了如圖的頻數(shù)分布表
分組 | 頻數(shù) |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
合計 | 56 |
(1)每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖;
(2)根據(jù)(1)中的頻數(shù)分布直方圖描述這56位菲爾茲獎得主獲獎時的年齡的分布特征;
(3)在(1)的基礎上,小彬又畫了如圖所示的扇形統(tǒng)計圖,圖中獲獎年齡在30~35歲的人數(shù)約占獲獎總人數(shù)的%(百分號前保留1位小數(shù));C組所在扇形對應的圓心角度數(shù)約為°(保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用釘子把木棒AB,BC和CD分別在端點B,C處連接起來,AB,CD可以轉動,用橡皮筋把AD連接起來,設橡皮筋AD的長是x cm.
(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;
(2)在(1)的條件下要圍成一個四邊形,你能求出橡皮筋長x的取值范圍嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°
(1)用尺規(guī)作AB的垂直平分線MN交BC于點P(不寫作法,保留作圖痕跡).
(2)連接AP,如果AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角尺繞點O逆時針旋轉至圖2,使點N在OC的反向延長線上,請直接寫出圖中∠MOB的度數(shù);
(2)將圖1中的三角尺繞點O逆時針旋轉至圖3,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);
(3)將圖1中的三角尺繞點O順時針旋轉至圖4,使ON在∠AOC的內(nèi)部,請?zhí)骄?/span>∠AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com