【題目】如圖,已知弧上的三點(diǎn)A、BC,連結(jié)AB,ACBC

1)用尺規(guī)作圖法找出所在圓的圓心.(保留作圖痕跡,不寫作法)

2)若A的中點(diǎn),BC8cm,AB5cm.求圓的半徑

【答案】1)詳見(jiàn)解析;(2)圓的半徑為cm

【解析】

1)作兩弦的垂直平分線,其交點(diǎn)即為圓心O

2)連接AO、BOAOBCE,利用勾股定理列方程求解可得結(jié)論.

1)如圖所示,分別作ABAC的垂直平分線,其交點(diǎn)為O,則O所在圓的圓心;

2)如圖,連接AO、BOAOBCE,

ABAC

AEBC,

BEBC×84,

RtABE中,AE3,

設(shè)⊙O的半徑為R

∵在RtBEO中,OB2BE2+OE2

R242+R32,

解得R

∴圓的半徑為cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若雙曲線y=kx-1與直線y=-2x+102≤x≤4時(shí)有且只有一個(gè)公共點(diǎn),則對(duì)k的取值要求是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線yx2x+2與直線yx2的圖象如圖,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線yx2的最短距離為( 。

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,yax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),(m,0);有如下判斷:①abc0;②b3c;③1;④|am+a|.其中正確的判斷有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:

1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱;

2)如圖1,在△ABC中,ABAC,點(diǎn)DBC上,且CDCA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;

3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EFCD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某學(xué)校有一邊長(zhǎng)為20米的正方形區(qū)域(四周陰影是四個(gè)全等的矩形,記為區(qū)域甲;中心區(qū)是正方形,記為區(qū)域乙).區(qū)域甲建設(shè)成休閑區(qū),區(qū)域乙建成展示區(qū),已知甲、乙兩個(gè)區(qū)域的建設(shè)費(fèi)用如下表:

區(qū)域

價(jià)格(百元米2

6

5

設(shè)矩形的較短邊的長(zhǎng)為米,正方形區(qū)域建設(shè)總費(fèi)用為百元.

1的長(zhǎng)為 米(用含的代數(shù)式表示);

2)求關(guān)于的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長(zhǎng)要求不低于8米且不超過(guò)12米時(shí),預(yù)備建設(shè)資金220000元夠用嗎?請(qǐng)利用函數(shù)的增減性來(lái)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件成本40元,出于營(yíng)銷考慮,要求每件售價(jià)不得低于40元,但物價(jià)部門要求每件售價(jià)不得高于60元.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是50元時(shí),每天的銷售量是100件,而銷售單價(jià)每漲1元,每天就少售出2件,設(shè)單價(jià)上漲

1)求當(dāng)為多少時(shí)每天的利潤(rùn)是1350元?

2)設(shè)每天的銷售利潤(rùn)為,求銷售單價(jià)為多少元時(shí),每天利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案