【題目】如圖,正方形ABCD中,點(diǎn)E,F是對(duì)角線BD上兩點(diǎn),DE=BF

1)判斷四邊形AECF是什么特殊四邊形,并證明;

2)若EF=4,DE=BF=2,求四邊形AECF的周長(zhǎng).

【答案】1)四邊形AECF是菱形,理由見(jiàn)解析;(2)四邊形AECF的周長(zhǎng)為

【解析】

1)首先連接AC,交BD于點(diǎn)O,根據(jù)正方形的性質(zhì),可得ACBDOA=OC=OB=OD,又由DE=BF,得出OE=OF,對(duì)角線互相垂直平分,進(jìn)而可判定四邊形AECF是菱形;

2)由已知條件可得,AC=BD=8,根據(jù)勾股定理,得出AE,進(jìn)而可得出四邊形AECF的周長(zhǎng).

1)四邊形AECF是菱形,理由如下:

連接AC,交BD于點(diǎn)O,如圖所示,

∵四邊形ABCD是正方形,

ACBD,OA=OC=OB=OD

DE=BF

OE=OF

∴四邊形AECF是菱形(對(duì)角線互相垂直且平分的四邊形是菱形);

2)∵EF=4,DE=BF=2,

AC=BD=8,

AE=OA2+OE2=,

∴四邊形AECF的周長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)選取了10名同學(xué)參加興隆臺(tái)區(qū)漢字聽(tīng)取大賽,他們的年齡(單位:歲)記錄如下:

年齡(單位:歲)

13

14

15

16

17

人數(shù)

2

2

3

2

1

這些同學(xué)年齡的眾數(shù)和中位數(shù)分別是( )

A.15,15B.15,16C.3,3D.315

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一列有理數(shù)-1,2,-34,-5,6,…如圖所示排列,根據(jù)圖中的排列規(guī)律可知,1”中封頂?shù)奈恢茫?/span>的位置)是有理數(shù)4,2”中封頂?shù)奈恢茫?/span>的位置)是有理數(shù)-9,按此規(guī)律排列,2020應(yīng)排在,,,________的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形紙片中,,,折疊紙片使點(diǎn)落在上的點(diǎn)處,折痕為,過(guò)點(diǎn)于點(diǎn).

1)求證:四邊形為菱形;

2)當(dāng)折痕的點(diǎn)與點(diǎn)重合時(shí)(如圖2),求菱形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直接寫(xiě)出結(jié)果:

1)﹣1+2_____;

2)﹣11_____

3)(﹣33_____;

4(﹣1)=_____;

5)(﹣12n﹣(﹣12n1_____n為正整數(shù));

6)方程4x0的解為_____

7)方程﹣x2的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,點(diǎn)、分別是邊的中點(diǎn),連接、交于點(diǎn),則下列結(jié)論錯(cuò)誤的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,、分別是、邊上的點(diǎn),且.

(1)求證:;

(2),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知內(nèi),內(nèi),.

1從圖1中的位置繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到重合時(shí),如圖2 ;

2)若圖1中的平分,則從圖1中的位置繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到重合時(shí),旋轉(zhuǎn)了多少度?

3從圖2中的位置繞點(diǎn)逆時(shí)針旋轉(zhuǎn),試問(wèn):在旋轉(zhuǎn)過(guò)程中的度數(shù)是否改變?若不改變,請(qǐng)求出它的度數(shù);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).

(1)求k的值;

(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi)運(yùn)動(dòng),試寫(xiě)出OPA的面積S關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍.

(3)探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),OPA的面積為,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案