【題目】如圖,一次函數(shù)y=-x+8的圖像與x軸、y軸分別交于A、B兩點.Px軸上一個動點,若沿BPOBP翻折,點O恰好落在直線AB上的點C處,則點P的坐標是______

【答案】,0),(-24,0)

【解析】分析:根據題意得出OA,OBAB的長度,然后根據折疊圖形的性質分兩種情況來進行,即點P在線段OA上和點Px軸的負半軸上,然后根據Rt△APC的勾股定理求出點P的坐標.

詳解:根據題意可得:OA=6,OB=8,則AB=10,

①、當點P在線段OA上時,設點P的坐標為(x,0),則AP=6-x,BC=OB-8,

CP=OP=x,AC=10-8=2,∴根據勾股定理可得:,解得:x=

∴點P的坐標為(,0);

②、當點Px軸的負半軸上時,設OP的長為x,則AP=6+x,BC=8,

CP=OP=x,AC=10+8=18,∴根據勾股定理可得:,解得:x=24,

∴點P的坐標為(-24,0);

∴綜上所述,點P的坐標為(,0),(-24,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算、化簡

1y2·y3·y4

2(-4a2b)3

3 (22)4×()8

4-8--15+-9--12);
5
6[-22-×36]÷5;
7)(-12017-]
853a2b-ab2-4-ab2+3a2b);
9)(2x2y+2xy2-[2x2y-1+3xy2+2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,矩形ABCD,AB=4,BCmm>1),點EAD邊上一定點,且AE=1.

(1)m=3,AB上存在點F使AEF與△BCF相似,求AF的長度.

(2)如圖②,m=3.5用直尺和圓規(guī)在AB上作出所有使AEF與△BCF相似的點F(不寫作法,保留作圖痕跡)

(3)對于每一個確定的m的值,AB上存在幾個點F,使得△AEF與△BCF相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8字”的性質及應用:

1)如圖1,AD、BC相交于點O,得到一個“8字”ABCD,求證:∠A+B=∠C+D

2)如圖2,∠ABC和∠ADC的平分線相交于點E,利用(1)中的結論證明:∠E(∠A+C).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由若干個完全相同的小正方體堆成的幾何體.

(1)畫出該幾何體的三視圖;

(2)在該幾何體的表面噴上紅色的漆,則在所有的小正方體中,有幾個正方體的三個面是紅色?

(3)若現(xiàn)在你手頭還有一個相同的小正方體.

a.在不考慮顏色的情況下,該正方體應放在何處才能使堆成的幾何體的三視圖不變?直接在圖中添上該正方體;

b.若考慮顏色,要使三視圖不變,則新添的正方體至少要在幾個面上著色?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列方程中,一元二次方程的個數(shù)是(  )

①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2=0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經過點A3,2)及B1,6.

1)求此一次函數(shù)的解析式;

2)求此一次函數(shù)與坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,厘米,厘米,點出發(fā),以每秒厘米的速度向運動,點同時出發(fā),以每秒厘米的速度向運動,其中一個動點到端點時,另一個動點也相應停止運動,那么,當以、為頂點的三角形與相似時,運動時間為________

查看答案和解析>>

同步練習冊答案