【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)M為頂點(diǎn),連接OM,若y與x的部分對(duì)應(yīng)值如表所示:
x | … | ﹣1 | 0 | 3 | … |
y | … | 0 | 0 | … |
(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)與y軸交于點(diǎn)C,點(diǎn)Q是直線(xiàn)BC下方拋物線(xiàn)上一點(diǎn),點(diǎn)Q的橫坐標(biāo)為xQ.若S△BCQ≥S△BOC,求xQ的取值范圍;
(3)如圖2,平移此拋物線(xiàn)使其頂點(diǎn)為坐標(biāo)原點(diǎn),P(0,﹣1)為y軸上一點(diǎn),E為拋物線(xiàn)上y軸左側(cè)的一個(gè)動(dòng)點(diǎn),從E點(diǎn)發(fā)出的光線(xiàn)沿EP方向經(jīng)過(guò)y軸上反射后與此拋物線(xiàn)交于另一點(diǎn)F.則當(dāng)E點(diǎn)位置變化時(shí),直線(xiàn)EF是否經(jīng)過(guò)某個(gè)定點(diǎn)?如果是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+x+;(2)xQ≥或xQ≤;(3)定點(diǎn)(0,1).
【解析】
(1)由拋物線(xiàn)y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),(﹣1,0),(3,0),即可求得拋物線(xiàn)的解析式;
(2)首先取OB的中點(diǎn)P(,0),連接CP,然后過(guò)點(diǎn)P作PQ∥BC交拋物線(xiàn)于Q,首先求得直線(xiàn)BC的解析式,然后由平行線(xiàn)的性質(zhì),求得直線(xiàn)PQ的解析式,再聯(lián)立 ,即可求得答案;
(3)首先得到平移后的拋物線(xiàn)的解析式為:y=﹣x2,再過(guò)點(diǎn)E作EM⊥y軸于M,過(guò)點(diǎn)F作FN⊥y軸于N,易得Rt△EPM∽Rt△FPN,再聯(lián)立,即可求得答案.
解:(1)∵拋物線(xiàn)y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),(﹣1,0),(3,0),
∴y=﹣(x+1)(x﹣3),
∴拋物線(xiàn)的解析式為:y=﹣x2+x+;
(2)取OB的中點(diǎn)P(,0),連接CP,
則S△PBC=S△BOC,
過(guò)點(diǎn)P作PQ∥BC交拋物線(xiàn)于Q,即為所求;
∵拋物線(xiàn)與y軸交于點(diǎn)C,
∴點(diǎn)C的坐標(biāo)為:(0,),
設(shè)直線(xiàn)BC的解析式為y=kx+b,
,
解得:,
∴直線(xiàn)BC的解析式為y=﹣x+,
∴設(shè)直線(xiàn)PQ的解析式為y=﹣x+n,
∴﹣×+n=0,
∴n=,
∴直線(xiàn)PQ的解析式為y=﹣x+,
聯(lián)立,
解得:x=,
若S△BCQ≥S△BOC
則xQ的取值范圍為:xQ≥或xQ≤;
(3)平移后的拋物線(xiàn)的解析式為:y=﹣x2,
過(guò)點(diǎn)E作EM⊥y軸于M,過(guò)點(diǎn)F作FN⊥y軸于N,
由反射可知:∠EPM=∠FPN,
∴Rt△EPM∽Rt△FPN,
∴,
設(shè)E(x1,y1)、F(x2,y2),設(shè)直線(xiàn)EF的解析式為y=kx+b,
∴,
∴x1(1+y2)+x2(y1+1)=0,
聯(lián)立,
整理得x2+2kx+2b=0,
∴x1+x2=﹣2k,x1x2=2b,
∵x1(1+y2)+x2(y1+1)=x1(1+kx2+b)+x2(kx1+b+1)=0,
∴2bx1x2+(b+1)(x1+x2)=0,
∴2kb﹣2k=0,b=1,
∴直線(xiàn)EF的解析式為y=kx+1
∴直線(xiàn)EF過(guò)定點(diǎn)(0,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)、 點(diǎn)分別在線(xiàn)段和線(xiàn)段上, 平分.
如圖1,求證:.
如圖2,若.求證:.
在問(wèn)的條件下,如圖3, 在線(xiàn)段上取一點(diǎn),使.過(guò)點(diǎn)作交于點(diǎn),作交于點(diǎn),連接,交于點(diǎn),連接,交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與直線(xiàn)交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,已知A(0,3),C(3,0).(1)拋物線(xiàn)的解析式__;(2)設(shè)E為線(xiàn)段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線(xiàn)段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線(xiàn)段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止.若使點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,則點(diǎn)E的坐標(biāo)__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“分組合作學(xué)習(xí)”成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)“分組合作學(xué)習(xí)”實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:
分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣
請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為 ;
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;
(3)通過(guò)“分組合作學(xué)習(xí)”前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)“分組合作學(xué)習(xí)”這項(xiàng)舉措的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明做游戲:游戲者分別轉(zhuǎn)動(dòng)如圖的兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)各一次,當(dāng)兩個(gè)轉(zhuǎn)盤(pán)的指針?biāo)笖?shù)字都為x2﹣4x+3=0的根時(shí),他就可以獲得一次為大家表演節(jié)目的機(jī)會(huì).
(1)利用樹(shù)狀圖或列表的方法(只選一種)表示出游戲可能出現(xiàn)的所有結(jié)果;
(2)求小明參加一次游戲就為大家表演節(jié)目的機(jī)會(huì)的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第7屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日在武漢開(kāi)幕,為備戰(zhàn)本屆軍運(yùn)會(huì),某運(yùn)動(dòng)員進(jìn)行了多次打靶訓(xùn)練,現(xiàn)隨機(jī)抽取該運(yùn)動(dòng)員部分打靶成績(jī)進(jìn)行整理分析,共分成四組:(優(yōu)秀)、(良好)、(合格)、(不合格),繪制了如下不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息,解答下列問(wèn)題:
(1)直接寫(xiě)出本次統(tǒng)計(jì)成績(jī)的總次數(shù)和圖中的值.
(2)求扇形統(tǒng)計(jì)圖中(合格)所對(duì)應(yīng)圓心角的度數(shù).
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),直線(xiàn)l是經(jīng)過(guò)點(diǎn)P的一條直線(xiàn),把△ABC沿直線(xiàn)l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B’.
(1)如圖1,當(dāng)PB=4時(shí),若點(diǎn)B’恰好在AC邊上,則AB’的長(zhǎng)度為_____;
(2)如圖2,當(dāng)PB=5時(shí),若直線(xiàn)l//AC,則BB’的長(zhǎng)度為 ;
(3)如圖3,點(diǎn)P在AB邊上運(yùn)動(dòng)過(guò)程中,若直線(xiàn)l始終垂直于AC,△ACB’的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積;
(4)當(dāng)PB=6時(shí),在直線(xiàn)l變化過(guò)程中,求△ACB’面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求此拋物線(xiàn)的表達(dá)式;
(2)過(guò)點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)作,垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線(xiàn)段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com