【題目】如圖,OC平分∠AOB,且∠AOB=60°,點(diǎn)P為OC上任意點(diǎn),PM⊥OA于M,PD∥OA,交OB于D,若OM=3,則PD的長(zhǎng)為( )
A.2B.1.5C.3D.2.5
【答案】A
【解析】
過(guò)點(diǎn)P作PN⊥OB于N,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得PN=PM,根據(jù)角平分線的定義求出∠AOC=30°,然后求出PM,再根據(jù)兩直線平行,同位角相等可得∠PDN=60°,求出∠DPN=30°,再求解即可.
如圖,過(guò)點(diǎn)P作PN⊥OB于N,
∵OC平分∠AOB,PM⊥OA,
∴PN=PM,
∵OC平分∠AOB,且∠AOB=60°,
∴∠AOC=∠AOB=×60°=30°,
∵OM=3,
∴PM=3×=,
∵PD∥OA,
∴∠PDN=∠AOB=60°,
∴∠DPN=90°﹣60°=30°,
∴PD=÷=2.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),B(,0),AB =6,作∠DBO=∠ABO,點(diǎn)H為y軸上的點(diǎn),∠CAH=∠BAO,BD交y軸于點(diǎn)E,直線DO交AC于點(diǎn)C.
(1)證明:△ABE為等邊三角形;
(2)若CD⊥AB于點(diǎn)F,求線段CD的長(zhǎng);
(3)動(dòng)點(diǎn)P從A出發(fā),沿A﹣O﹣B路線運(yùn)動(dòng),速度為1個(gè)單位長(zhǎng)度每秒,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā),沿B﹣O﹣A路線運(yùn)動(dòng),速度為2個(gè)單位長(zhǎng)度每秒,到A點(diǎn)處停止運(yùn)動(dòng).兩點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PM⊥CD于點(diǎn)M,QN⊥CD于點(diǎn)N.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPM與△OQN全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)將繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)得,連接已知.
求證:是等邊三角形;
當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;
探究:當(dāng)為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開(kāi)發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資萬(wàn)元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量(萬(wàn)臺(tái))與本地的廣告費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系滿足.該產(chǎn)品的外地銷售量(萬(wàn)臺(tái))與外地廣告費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段來(lái)表示.
其中點(diǎn)為拋物線的頂點(diǎn).
結(jié)合圖象,求出(萬(wàn)臺(tái))與外地廣告費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系式;
求該產(chǎn)品的銷售總量(萬(wàn)臺(tái))與本地廣告費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系式;
如何安排廣告費(fèi)用才能使銷售總量最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,邊長(zhǎng)為a、b的矩形,它的周長(zhǎng)為14,面積為10,求a2b+3a3b3+ab2的值;
(2)已知a+b=8,ab=16+c2,求(a﹣b+c)2018的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=40°,分別以AB,AC為邊作兩個(gè)等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù).
(2)求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在北部灣經(jīng)濟(jì)區(qū)農(nóng)業(yè)示范基地采購(gòu)A,B兩種農(nóng)產(chǎn)品,已知A種農(nóng)產(chǎn)品每千克的進(jìn)價(jià)比B種多2元,且用24000元購(gòu)買A種農(nóng)產(chǎn)品的數(shù)量(按重量計(jì))與用18000元購(gòu)買B種農(nóng)產(chǎn)品的數(shù)量(按重量計(jì))相同.
(1)求A,B兩種農(nóng)產(chǎn)品每千克的進(jìn)價(jià)分別是多少元?
(2)該公司計(jì)劃購(gòu)進(jìn)A,B兩種農(nóng)產(chǎn)品共40噸,并運(yùn)往異地銷售,運(yùn)費(fèi)為500元/噸,已知A種農(nóng)產(chǎn)品售價(jià)為15元/kg,B種農(nóng)產(chǎn)品售價(jià)為12元/kg,其中A種農(nóng)產(chǎn)品至少購(gòu)進(jìn)15噸且不超過(guò)B種農(nóng)產(chǎn)品的數(shù)量,問(wèn)該公司應(yīng)如何采購(gòu)才能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時(shí),四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)設(shè)x1,x2分別是方程的兩個(gè)根,且滿足x12+x22=x1x2+10,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com