【題目】已知:如圖,AB=AC,AE=AF,連結BFCE,交于O,連結AO.求證:

1B=∠C

2AO平分BAC

【答案】1)答案見解析;(2)答案見解析

【解析】

1)由SAS證得△AEC≌△AFB,即可得出結論;

2)先證△EBO≌△FCO,得出OB=OC,再由SSS證明△AOB≌△AOC,即可得出結論.

1)在△AEC與△AFB中,∵AE=AF,∠EAF=EAFAC=AB,∴△AEC≌△AFBSAS),∴∠C=B;

2)∵AB=ACAE=AF,∴BE=CF

在△BEO和△CFO中,∵∠B=C,∠EOB=FOCBE=CF,∴△BEO≌△CFO,∴BO=CO

在△AOB和△AOC中,∵AB=AC,AO=AOOB=OC,∴△AOB≌△AOC,∴∠BAO=CAO,∴AO平分∠BAC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,已知ABC≌△DBE,點DAC上,BCDE交于點P,若AD=DC=2.4,BC=4.1

1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);

2)求DCPBPE的周長和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點M不與B,C重合,CNAB交于點N,連接OM,ON,下列五個結論:;;,則的最小值是,其中正確結論的個數(shù)是  

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,,被直線所截,點是線段上的點,過點,連接,

1)試說明

2)將線段沿著直線平移得到線段,如圖2,連接.若,當時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑ODBC,垂足為E,若BC=,OE=3;

求:(1)O的半徑;

(2)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在△ABC,BAC=90AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D.E證明:DE=BD+CE.

(2)如圖②,(1)中的條件改為:在△ABC中,AB=AC,D. A.E三點都在直線m上,并且有∠BDA=AEC=BAC,請問結論DE=BD+CE是否成立,若成立,請你給證明:若不存在,請說明理由。

(3)應用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>CAE,D. A.E三點都在直線m上,且∠BDA=AEC=BAC,只出現(xiàn)mBC的延長線交于點F,若BD=5,DE=7,EF=2CE,求△ABD與△ABF的面積之比。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=110°,B=D=90°,在BCCD上分別找一點M,N,使AMN周長最小,則∠AMN+ANM的角度為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

我們知道的幾何意義是在數(shù)軸上數(shù)對應的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應的點之間的距離;

1.解方程,因為在數(shù)軸上到原點的距離為的點對應的數(shù)為,所以方程的解為

2.解不等式,在數(shù)軸上找出的解(如圖),因為在數(shù)軸上到對應的點的距離等于的點對應的數(shù)為,所以方程的解為,因此不等式的解集為

參考閱讀材料,解答下列問題:

1)方程的解為 ;

2)解不等式:;

3)解不等式:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“3.15”植樹節(jié)活動后,對栽下的甲、乙、丙、丁四個品種的樹苗進行成活率觀測,以下是根據觀測數(shù)據制成的統(tǒng)計圖表的一部分:

栽下的各品種樹苗棵數(shù)統(tǒng)計表

植樹品種

甲種

乙種

丙種

丁種

植樹棵數(shù)

150

125

125

若經觀測計算得出丙種樹苗的成活率為89.6%,請你根據以上信息解答下列問題:

1)這次栽下的四個品種的樹苗共 棵,乙品種樹苗 棵;

2)圖1中,甲 %、乙 %,并將圖2補充完整;

3)求這次植樹活動的樹苗成活率.

查看答案和解析>>

同步練習冊答案