二次函數(shù)y=-3(x-1)2+2圖象的頂點(diǎn)坐標(biāo)是______.
∵拋物線(xiàn)解析式為y=-3(x-1)2+2,
∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(1,2).
故答案為(1,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=mx2-2mx-2(m≠0)與y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B.
(1)求點(diǎn)A,B的坐標(biāo);
(2)設(shè)直線(xiàn)l與直線(xiàn)AB關(guān)于該拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),求直線(xiàn)l的解析式;
(3)若該拋物線(xiàn)在-2<x<-1這一段位于直線(xiàn)l的上方,并且在2<x<3這一段位于直線(xiàn)AB的下方,求該拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中, 拋物線(xiàn)+與直線(xiàn)交于A(yíng), B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)時(shí),直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且在直線(xiàn)AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線(xiàn)+ 軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).在直線(xiàn)上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線(xiàn)與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線(xiàn)與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱(chēng)軸是直線(xiàn)
(1)求A點(diǎn)的坐標(biāo)及該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請(qǐng)問(wèn)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)Q,使得以點(diǎn)A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)是二次函數(shù)的是( 。
A.y=
2
x
+x2
B.y=
2
5
+x2
C.y=(x-1)2-x2D.y=
1
2
x(x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用配方法求二次函數(shù)y=4x2-24x+26的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=x2的圖象的開(kāi)口方向是(  )
A.向上B.向下C.向左D.向右

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,
即:當(dāng)n為非負(fù)整數(shù)時(shí),如果n-
1
2
≤x<n+
1
2
則<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問(wèn)題:
(1)填空:①<π>=______(π為圓周率);
②如果<2x-1>=3,則實(shí)數(shù)x的取值范圍為_(kāi)_____;
(2)①當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),求證:<x+m>=m+<x>;
②舉例說(shuō)明<x+y>=<x>+<y>不恒成立;
(3)求滿(mǎn)足<x>=
4
3
x
的所有非負(fù)實(shí)數(shù)x的值;
(4)設(shè)n為常數(shù),且為正整數(shù),函數(shù)y=x2-x+
1
4
的自變量x在n≤x<n+1范圍內(nèi)取值時(shí),函數(shù)值y為整數(shù)的個(gè)數(shù)記為a,滿(mǎn)足<
k
>=n的所有整數(shù)k的個(gè)數(shù)記為b.求證:a=b=2n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖:拋物線(xiàn)y=ax2+bx+c(a≠0)的圖象與x軸的一個(gè)交點(diǎn)是(-2,0),頂點(diǎn)是(1,3).下列說(shuō)法中不正確的是(  )
A.拋物線(xiàn)的對(duì)稱(chēng)軸是x=1
B.拋物線(xiàn)的開(kāi)口向下
C.拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(2,0)
D.當(dāng)x=1時(shí),y有最大值是3

查看答案和解析>>

同步練習(xí)冊(cè)答案