【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,M、N分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,下列結(jié)論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有( )
A. 4個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
【答案】D
【解析】
根據(jù)AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點(diǎn)F,由三角形內(nèi)角和定理以及平行線的判定和性質(zhì)分別分析判斷即可.
如圖,
∵AB⊥BC,AE⊥DE,
∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,
∴∠1=∠DEC,
又∵∠1+∠2=90°,
∴∠DEC+∠2=90°,
∴∠C=90°,
∴∠B+∠C=180°,
∴AB∥CD,故①正確;
∴∠ADN=∠BAD,
∵∠ADC+∠ADN=180°,
∴∠BAD+∠ADC=180°,
又∵∠AEB≠∠BAD,
∴AEB+∠ADC≠180°,故②錯(cuò)誤;
∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,
∴∠2=∠4,
∴DE平分∠ADC,故③正確;
∵∠1+∠2=90°,
∴∠EAM+∠EDN=360°-90°=270°.
∵∠EAM和∠EDN的平分線交于點(diǎn)F,
∴∠EAF+∠EDF=×270°=135°.
∵AE⊥DE,
∴∠3+∠4=90°,
∴∠FAD+∠FDA=135°-90°=45°,
∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D,E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF,BF,則下列結(jié)論:①△AFB≌△ADC;②△ABD為等腰三角形;③∠ADC=120°;④BE2+DC2=DE2,其中正確的有( )個(gè)
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,延長(zhǎng)BC到點(diǎn)E,使CE=1,連接DE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△ABP和△DCE全等時(shí),t的值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坐標(biāo)平面內(nèi),已知點(diǎn)A(0,3)、B(6,5),
(1)連接AB,在x軸上確定點(diǎn)P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法),并求出P點(diǎn)坐標(biāo);
(2)點(diǎn)Q是x軸上的動(dòng)點(diǎn),求點(diǎn)Q與A、B兩點(diǎn)的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一水果店,從批發(fā)市場(chǎng)按4元千克的價(jià)格購(gòu)進(jìn)10噸蘋(píng)果,為了保鮮放在冷藏室里,但每天仍有一些蘋(píng)果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測(cè),每天每千克價(jià)格上漲元.
設(shè)x天后每千克蘋(píng)果的價(jià)格為p元,寫(xiě)出p與x的函數(shù)關(guān)系式;
若存放x天后將蘋(píng)果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;
該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某農(nóng)戶發(fā)展養(yǎng)禽業(yè),準(zhǔn)備利用現(xiàn)有的34米長(zhǎng)的籬笆靠墻AB(墻長(zhǎng)為25米)圍成一個(gè)面積為120平方米的長(zhǎng)方形養(yǎng)雞場(chǎng),這個(gè)養(yǎng)雞場(chǎng)的長(zhǎng)和寬各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[x]表示不超過(guò)x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:①當(dāng)x=﹣0.5時(shí),y=0.5;②y的取值范圍是:0≤y≤1;③對(duì)于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有 (只填寫(xiě)正確命題的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com