精英家教網 > 初中數學 > 題目詳情

【題目】賞中華詩詞,尋文化基因,品生活之美,某校舉辦了首屆中國詩詞大會,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:

(1)①頻數分布表中a的值為;②若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是;③將頻數分布直方圖補充完整;

(2)第510名同學中,有4名男同學(用A,B,C,D表示),現將這4名同學分成兩組(每組2人)進行對抗練習,求AB兩名男同學能分在同一組的概率.

組別

成績x

頻數(人數)

1

50≤x<60

6

2

60≤x<70

8

3

70≤x<80

14

4

80≤x<90

a

5

90≤x<100

10

【答案】(1)a=12;44%;③見解析;(2).

【解析】

(1)①根據題意和表中的數據可以求得a的值;②利用這次調查的優(yōu)秀人數除以這次調查的人數即可得優(yōu)秀率;③利用表格中的數據將頻數分布直方圖補充完整即可;(2)直接列舉出4人分為2組所有等可能結果,利用概率公式求解即可.

1)①由題意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,

②本次測試的優(yōu)秀率為×100%=44%,

③補充完整的頻數分布直方圖如下圖所示,

(2)根據題意知所有的可能性為:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)

所以A、B能分在一起的概率為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經過點O的直線l將四邊形分成兩部分,直線lOC所成的角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].

(理解)

若點D與點A重合,則這個操作過程為FZ[45°,3];

(嘗試)

(1)若點D恰為AB的中點(如圖2),求θ;

(2)經過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上,求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象如圖,下列結論:①;;;,正確的個數是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】賞中華詩詞,尋文化基因,品生活之美,某校舉辦了首屆中國詩詞大會,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:

(1)①頻數分布表中a的值為;②若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是;③將頻數分布直方圖補充完整;

(2)第510名同學中,有4名男同學(用A,B,C,D表示),現將這4名同學分成兩組(每組2人)進行對抗練習,求AB兩名男同學能分在同一組的概率.

組別

成績x

頻數(人數)

1

50≤x<60

6

2

60≤x<70

8

3

70≤x<80

14

4

80≤x<90

a

5

90≤x<100

10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某手機店銷售一部A型手機比銷售一部B型手機獲得的利潤多50元,銷售相同數量的A型手機和B型手機獲得的利潤分別為3000元和2000元.

(1)求每部A型手機和B型手機的銷售利潤分別為多少元?

(2)該商店計劃一次購進兩種型號的手機共110部,其中A型手機的進貨量不超過B型手機的2倍.設購進B型手機n部,這110部手機的銷售總利潤為y元.

①求y關于n的函數關系式;

②該手機店購進A型、B型手機各多少部,才能使銷售總利潤最大?

(3)實際進貨時,廠家對B型手機出廠價下調m(30<m<100)元,且限定商店最多購進B型手機80臺.若商店保持兩種手機的售價不變,請你根據以上信息及(2)中的條件,設計出使這110部手機銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC,∠C=90°,ACBC,若DBC上一點,且到A,B兩點距離相等.

1)利用尺規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

2)連結AD,若AB=5,AC=3,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數ymx2m+3的圖像與y=-x的圖像交于點C,且點C的橫坐標為-3,與x軸、y軸分別交于點A、點B

1)求m的值與AB的長;

2)若點D9,0),連結BD,求證△ABD為直角三角形.

3)在y軸上是否存在點P,使得△ABP為等腰三角形,若存在請求出P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,無論k取何實數,直線y=(k-1)x+4-5k總經過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC內接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點,OPBC,垂足為E,交⊙OD,連接BD

1)求證:BD平分∠PBC;

2)若PD =3DE,求的值.

查看答案和解析>>

同步練習冊答案