精英家教網 > 初中數學 > 題目詳情

中,,點分別在,上,四邊形為平行四邊形,且,則的周長是( 。

A24     B18       C16       D12

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①?②?③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點.
(1)該學習小組成員意外的發(fā)現圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現的結論選擇其一說明理由.

(2)試探究圖②中BN、CN、CM、DN這四條線段之間的數量關系,寫出你的結論,并說明理由.
(3)將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之間所滿足的數量關系.(不需要證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,精英家教網OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內是否存在點Q和點P(點P在直線AC上),使以O,P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•徐匯區(qū)一模)小楠家附近的公路上通行車輛限速為60千米/小時.小楠家住在距離公路50米的居民樓(如圖中的P點處),在他家前有一道路指示牌MN正好擋住公路上的AB段(即點P、M、A和點P、N、B分別在一直線上),已知MN∥AB,∠MNP=30°,∠NMP=45°,小楠看見一輛卡車通過A處,7秒后他在B處再次看見這輛卡車,他認定這輛卡車一定超速,你同意小楠的結論嗎?請說明理由.(參考數據:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•漳州)如圖,在平面直角坐標系中,矩形OABC的邊OA=2,0C=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發(fā)沿線段DA→AB移動,且一直角邊始終經過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:D點坐標是(
2
2
,
0
0
),E點坐標是(
2
2
,
2
2
);
(2)如圖1,當點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;
(3)如圖2,當點P在線段AB上移動時,設P點坐標為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數關系式,并求出S隨x增大而減小時所對應的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案