【題目】中,,,以為一邊,在外部作等腰直角三角形,則線段的長為_______

【答案】8

【解析】

存在三種情況,一種是AD=AC,∠DAC=90°,第二種是AC=CD,∠ACD=90°,第三種是AD=DC,∠ADC=90°.第一種直接可得出BD長,后兩種構(gòu)造直角三角形,利用勾股定理可求得BD的長.

情況一:AD=AC,∠DAC=90°,圖形如下

AB=AC=4,AC=AD

BD=4+4=8

情況二:AC=CD,∠ACD=90°,圖形如下,過點DAB的垂線,交AB反向延長線于點E,連接BD

AB=AC=4,AC=CD,

CD=4

∵∠DCA=90°,∠CAB=90°,∠DEA=90°

CDAE,DE∥CA,

∴四邊形ACDE是平行四邊形

DE=CA=4,EA=DC=4

Rt△DEB中,DE=4,EB=8,

BD=

情況三:AD=DC,∠ADC=90°,圖形如下,過點DAB的垂線,交AB反向延長線于點E,過點DAC的垂線,交AC于點F

AB=AC=4,△ACD是等腰直角三角形,DF⊥AC

DF=FA=FC=2

同理,四邊形DFAE是平行四邊形

DE=FA=2,AE=DF=2

Rt△DEB中,DE=2,EB=6,

BD=

故答案為:8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過原點及點,,且圖象與x軸的另一交點到原點的距離為1,則該二次函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形中,點E上,點F上,連接、.平分

1)如圖1,求證:

2)如圖2,若點EBC的中點,,求的面積.

3)如圖3,若∠B=90°,連接BD分別交AFAEM、N兩點,連接ME,若MEAFM BMEF=45,△AEF的面積為15時,求AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(m-1)x2-2x+1=0有兩個實數(shù)根,則m的取值范圍是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

(1)為何值時,方程有一根為零?

(2)為何值時,方程的兩個根互為相反數(shù)?

(3)是否存在,使方程的兩個根互為倒數(shù)?若存在,請求出的值;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴建部分中小學(xué),某縣計劃對A、B兩類學(xué)校進行改擴建,根據(jù)預(yù)算,改擴建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學(xué)校共10所,改擴建資金由國家財政和地方財政共同承擔(dān).若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學(xué)校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC90°,∠ABC=∠ACB,點D在直線BC上運動(不與點BC重合),點E在射線AC上運動,且∠ADE=∠AED,設(shè)∠DACn.

1)如圖①,當(dāng)點D在邊BC上時,且n等于30°,則∠BAD ,∠CDE

2)如圖②,當(dāng)點D運動到點B左側(cè)時,其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說明理由;

3)當(dāng)點D運動到點C的右側(cè)時,其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請在圖③中畫出圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點上,,點的中點,若點1厘米/秒的速度從點出發(fā),沿向點運動;點同時以2厘米/秒的速度從點出發(fā),沿向點運動,點運動到停止運動,點也同時停止運動,當(dāng)點運動時間是_____秒時,以點為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案