【題目】在《科學(xué)》課上,老師講到溫度計的使用方法及液體的沸點時,好奇的王紅同學(xué)準(zhǔn)備測量食用油的沸點,已知食用油的沸點溫度高于水的沸點溫度(),王紅家只有刻度不超過的溫度計,她的方法是在鍋中倒入一些食用油,用煤氣灶均勻加熱,并每隔測量一次鍋中油溫,測量得到的數(shù)據(jù)如下表:

時間

0

10

20

30

40

油溫

10

30

50

70

90

王紅發(fā)現(xiàn),燒了時,油沸騰了,則下列說法不正確的是( )

A. 沒有加熱時,油的溫度是

B. 加熱,油的溫度是

C. 估計這種食用油的沸點溫度約是

D. 每加熱,油的溫度升高

【答案】D

【解析】

根據(jù)表格中的數(shù)據(jù)得:每加熱10s,溫度升高20℃,由此逐一進行分析即可得.

根據(jù)表格中的數(shù)據(jù)得:沒有加熱時,溫度為10℃,每加熱10s,溫度升高20℃,

由此可得加熱50s時,油的溫度是110℃,

故選項A、B的說法正確,不符合題意,

選項D的說法不正確,符合題意,

燒了時,油沸騰了,此時油溫為10+20×110÷10=230℃,故C選項正確,不符合題意,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,E.F分別是兩組對邊延長線的交點,EG.FG分別平分.,,,的大小是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在數(shù)軸上點表示的數(shù)為-2,06.點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為

1)請直接寫出結(jié)果,

2)點為線段上的一個動點,其對應(yīng)的數(shù)為,請化簡式子,(寫出化簡過程)

3)點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和5個單位長度的速度向右運動.請問:的值是否隨著運動時間的變化而變化?若變化,請說明理由;若不變,請求其值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點對應(yīng)的數(shù)分別為-1,0,3,點為數(shù)軸上任意一點,其對應(yīng)的數(shù)為

1的長為_______;

2)如果點到點、點的距離相等,那么的值是_______;

3)若點到點、點的距離之和是8,那么的值是_______;

4)如果點以每分鐘1個單位長度的速度從點向左運動,同時點和點分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)分鐘時點P到點、點的距離相等,那么的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列判定中,正確的個數(shù)有( )

①一組對邊平行,一組對邊相等的四邊形是平行四邊形;

②對角線互相平分且相等的四邊形是矩形;

③對角線互相垂直的四邊形是菱形;

④對角線互相垂直平分且相等的四邊形是正方形,

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平高集團有限公司準(zhǔn)備生產(chǎn)甲、乙兩種開關(guān)8萬件,銷往東南亞國家和地區(qū)。已知2件甲種開關(guān)與3件乙種開關(guān)銷售額相同3件甲種開關(guān)比2件乙種開關(guān)的銷售額多1500。

(1)甲種開關(guān)與乙種開關(guān)的銷售單價各為多少元?

(2)若甲、乙兩種開關(guān)的銷售總收入不低于5400萬元,則至少銷售甲種開關(guān)多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在矩形中,對角線相交于點,過點作直線,且交于點,交于點,連接,且平分.

①求證:四邊形是菱形;

②直接寫出的度數(shù);

2)把(1)中菱形進行分離研究,如圖2,分別在邊上,且,連接的中點,連接,并延長于點,連接.試探究線段之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形進行特殊化探究,如圖3,矩形滿足時,點是對角線上一點,連接,作,垂足為點,交于點,連接,交于點.請直接寫出線段三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB、CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).

解:因為∠1=∠2=80°(已知),

所以AB∥CD__________

所以∠BGF+∠3=180°__________

因為∠2+∠EFD=180°(鄰補角的性質(zhì)).

所以∠EFD=________.(等式性質(zhì)).

因為FG平分∠EFD(已知).

所以∠3=________∠EFD(角平分線的性質(zhì)).

所以∠3=________.(等式性質(zhì)).

所以∠BGF=________.(等式性質(zhì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式:x+43x2)并把解集在數(shù)軸上表示出來.

2x取哪些整數(shù)時,不等式5x13x+1)與1≥﹣2都成立.

查看答案和解析>>

同步練習(xí)冊答案