如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有______.(把你認(rèn)為正確的序號都填上)
①∵正△ABC和正△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),
∴AD=BE,∠ADC=∠BEC,(故①正確);

②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴∠QPC=∠BCA,
∴PQAE,(故②正確);

③∵△CDP≌△CEQ,
∴DP=QE,
∵△ADC≌△BEC
∴AD=BE,
∴AD-DP=BE-QE,
∴AP=BQ,(故③正確);

④∵DE>QE,且DP=QE,
∴DE>DP,(故④錯(cuò)誤);

⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正確).
∴正確的有:①②③⑤.
故答案為:①②③⑤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC是等邊三角形,D、E分別是BC、CA上的點(diǎn),且BD=CE.
(1)求證:AD=BE;(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°.點(diǎn)D是直線BC上的一個(gè)動(dòng)點(diǎn),連接AD,并以AD為邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,當(dāng)點(diǎn)E恰好在線段BC上時(shí),請判斷線段DE和BE的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;
(2)當(dāng)點(diǎn)E不在直線BC上時(shí),連接BE,其它條件不變,(1)中結(jié)論是否成立?若成立,請結(jié)合圖②給予證明;若不成立,請直接寫出新的結(jié)論;
(3)若AC=3,點(diǎn)D在直線BC上移動(dòng)的過程中,是否存在以A、C、D、E為頂點(diǎn)的四邊形是梯形?如果存在,直接寫出線段CD的長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在邊長為20cm的等邊三角形ABC紙片中,以頂點(diǎn)C為圓心,以此三角形的高為半徑畫弧分別交AC、BC于點(diǎn)D、E,則扇形CDE所圍的圓錐(不計(jì)接縫)的底圓半徑為( 。
A.
5
3
3
cm
B.
10
3
3
cm
C.5
3
cm
D.10
3
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等邊△ABC中,F(xiàn)是AB中點(diǎn),EF⊥AC于E,若△ABC的邊長為10,則AE=______,AE:EC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:△ABC是等邊三角形?
(1)若AD=BE=CF,求證△DEF是等邊三角形.?
(2)請問(1)的逆命題成立嗎?若成立,請證明,若不成立,請用反例說明?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形的高是5
3
cm,則該三角形的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是邊長為2cm的等邊三角形,延長CB到D,使BD=BC,延長BC到E,使CE=CB.求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC是等邊三角形,ADBC,CD⊥AD,垂足為D,E為AC的中點(diǎn),AD=DE=6cm.則∠ACD=______°,AC=______cm,∠DAC=______°,△ADE是______三角形.

查看答案和解析>>

同步練習(xí)冊答案