【題目】如圖,D,E為△ABC邊AB上兩點(diǎn),F,H分別在AC,BC上,∠1+∠2=180°
(1)求證:EF∥DH;
(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度數(shù).
【答案】(1)見(jiàn)解析;(2)∠EFC=115°.
【解析】
(1)由∠1+∠2=180°,∠ADH+∠2=180°,得出∠1=∠ADH,即可得出結(jié)論;
(2)過(guò)點(diǎn)C作CG∥DH,交AB于G,則∠GCB=∠DHB=25°,推出∠ACG=∠ACB﹣∠GCB=65°,由EF∥DH,得出CG∥EF,得出∠EFC+∠ACG=180°,即可得出結(jié)果.
(1)證明:∵∠1+∠2=180°,∠ADH+∠2=180°,
∴∠1=∠ADH,
∴EF∥DH;
(2)解:過(guò)點(diǎn)C作CG∥DH,交AB于G,如圖所示:
則∠GCB=∠DHB=25°,
∴∠ACG=∠ACB﹣∠GCB=90°﹣25°=65°,
由(1)得:EF∥DH,
∴CG∥EF,
∴∠EFC+∠ACG=180°,
∴∠EFC=180°﹣∠ACG=180°﹣65°=115°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2 ;
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)EF與MN相交于點(diǎn)O,∠MOE=30°,將一直角三角尺的直角頂點(diǎn)與點(diǎn)O重合,直角邊OA與MN重合,OB在∠NOE內(nèi)部.操作:將三角尺繞點(diǎn)O以每秒5°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),直角邊OB恰好平分∠NOE?此時(shí)OA是否平分∠MOE?請(qǐng)說(shuō)明理由;
(2)若在三角尺轉(zhuǎn)動(dòng)的同時(shí),直線(xiàn)EF也繞點(diǎn)O以每秒8°的速度順時(shí)針?lè)较蛐D(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時(shí),另一方同時(shí)停止轉(zhuǎn)動(dòng).
①當(dāng)t為何值時(shí),OE平分∠AOB?
②OE能否平分∠NOB?若能請(qǐng)直接寫(xiě)出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從直徑為2cm的圓形紙片中,剪出一個(gè)圓心角為90°的扇形OAB,且點(diǎn)O、A、B在圓周上,把它圍成一個(gè)圓錐,則圓錐的底面圓的半徑是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,將理由補(bǔ)充完整.
如圖,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求證:FG∥BC
證明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定義)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定義)
∴∠1=∠2 ( )
∴∠1=∠3(等量代換)
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來(lái),一種新型打車(chē)方式受到大眾歡迎,該打車(chē)方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車(chē)方式出行,按上述計(jì)價(jià)規(guī)則,其打車(chē)總費(fèi)用、行駛里程數(shù)與打車(chē)時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車(chē)費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車(chē)方式,打車(chē)行駛了11公里,用了14分鐘,那么小華的打車(chē)總費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由一個(gè)角為60°且邊長(zhǎng)為1的菱形組成的網(wǎng)格,每個(gè)菱形的頂點(diǎn)稱(chēng)為格點(diǎn),點(diǎn)A,B,C都在格點(diǎn)上,則tan∠BAC=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com