【題目】如圖1,已知直線PQ∥MN,點(diǎn)A、B分別在直線MN、PQ上,射線AM繞點(diǎn)A以5°/秒的速度按順時(shí)針開始旋轉(zhuǎn),旋轉(zhuǎn)至與AN(或AM)重合后便立即回轉(zhuǎn),射線BQ繞點(diǎn)B以2°/秒的速度按順時(shí)針開始旋轉(zhuǎn),旋轉(zhuǎn)至與BP重合后便停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)后的射線分別記為AM'和BQ'.
(1)若射線BQ先轉(zhuǎn)動(dòng)30秒,射線AM才開始轉(zhuǎn)動(dòng),在射線AM第一次到達(dá)AN之前,射線AM轉(zhuǎn)動(dòng)幾秒后AM'∥BQ';
(2)若射線AM,BQ同時(shí)轉(zhuǎn)動(dòng)t秒,在射線BQ停止轉(zhuǎn)動(dòng)之前,記射線AM'與BQ'交于點(diǎn)H,若∠AHB=90°,求t的值;
(3)射線AM,BQ同時(shí)轉(zhuǎn)動(dòng),在射線AM第一次到達(dá)AN之前,記射線AM'與BQ'交于點(diǎn)K,過K作KC⊥AK交PQ于點(diǎn)C,如圖2,若∠BAN=30°,則在旋轉(zhuǎn)過程中,∠BAK與∠BKC有何數(shù)量關(guān)系?并說明理由.
【答案】(1)t=10s時(shí),BQ′∥AM′;(2)滿足條件的t的值為30秒或90秒.(3)
【解析】
(1)當(dāng)∠MAM′=∠QBQ′時(shí),BQ′∥AM′,延長構(gòu)建方程即可解決問題;
(2)根據(jù)點(diǎn)Q的運(yùn)動(dòng)時(shí)間t=90秒,分三種情形分別構(gòu)建方程求解即可;
(3)如圖3中,設(shè)∠KAB=x,∠BKC=y.設(shè)直線CK交MN于G.利用平行線的性質(zhì),構(gòu)建方程組確定x與y之間的關(guān)系即可.
(1)由題意當(dāng)5t=30+2t時(shí),BQ′∥AM′,
∴t=10s時(shí),BQ′∥AM′.
(2)∵點(diǎn)Q的運(yùn)動(dòng)時(shí)間t==90(秒),
分三種情形:①射線AM第一次到達(dá)AN之前:如圖1中,
當(dāng)∠NAM′+∠QBQ′=90°時(shí),∠AHB=90°,
則有2t+180°﹣5t=90°,
解得t=30(秒),
②射線AM返回途中:如圖2中,
當(dāng)∠MAM′+∠PBQ′=90°時(shí),∠AHB=90°,
則有180°﹣2t+180°﹣(5t﹣180°)=90°,
解得t=(秒)(不合題意舍棄),
③射線AM第二次到達(dá)AN之前,如圖2中,
當(dāng)∠MAM′+∠PBQ′=90°時(shí),∠AHB=90°,
則有180°﹣2t+(5t﹣360°)=90°,
解得t=90(秒),
綜上所述,滿足條件的t的值為30秒或90秒.
(3)如圖3中,設(shè)∠KAB=x,∠BKC=y.設(shè)直線CK交MN于G.
∵AK⊥KC,
∴∠AKG=90°,
∴∠KAG+∠AGK=90°,
∵PQ∥MN,
∴∠AGK=∠QCK,
∴180°﹣5t+2t+y=90°,
∴t=30°﹣y,
∵x=30°﹣(180°﹣5t),
∴x=5t﹣150°,
∴x=5(30°﹣y)﹣150°,
∴x=y,
∴∠KAB=∠BKC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形,點(diǎn)、分別在軸、軸上, 點(diǎn)坐標(biāo)為, 連接,將矩形沿折疊,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),則點(diǎn)的坐標(biāo)為_____(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動(dòng),將三角板MON 繞點(diǎn)O 以每秒8°的速度順時(shí)針方向旋轉(zhuǎn)t 秒.
(1)如圖2,當(dāng)t= 秒時(shí),OM 平分∠AOC,此時(shí)∠NOC﹣∠AOM= ;
(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時(shí)在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);
(3)直線AD 的位置不變,若在三角板MON 開始順時(shí)針旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OBC也繞點(diǎn)O 以每秒2°的速度順時(shí)針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時(shí),兩個(gè)三角板同時(shí)停止運(yùn)動(dòng).
①當(dāng)t= 秒時(shí),∠MOC=15°;
②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點(diǎn)D、E、F,則∠DEF的度數(shù)為°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級學(xué)生小聰和小明完成了數(shù)學(xué)實(shí)驗(yàn)《鐘面上的數(shù)學(xué)》之后,自制了一個(gè)模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點(diǎn)O轉(zhuǎn)動(dòng),OA運(yùn)動(dòng)速度為每秒15°,OB運(yùn)動(dòng)速度為每秒5°,當(dāng)一根指針與起始位置重合時(shí),運(yùn)動(dòng)停止,設(shè)轉(zhuǎn)動(dòng)的時(shí)間為t秒,請你試著解決他們提出的下列問題:
(1)若OA順時(shí)針轉(zhuǎn)動(dòng),OB逆時(shí)針轉(zhuǎn)動(dòng),t= 秒時(shí),OA與OB第一次重合;
(2)若它們同時(shí)順時(shí)針轉(zhuǎn)動(dòng),
①當(dāng) t=2秒時(shí),∠AOB= °;
②當(dāng)t為何值時(shí),OA與OB第一次重合?
③當(dāng)t為何值時(shí),∠AOB=30°?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將平行四邊形紙片按如圖方式折疊,使點(diǎn)與重合,點(diǎn) 落到處,折痕為.
(1)求證:;
(2)連結(jié),判斷四邊形是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某邊防局接到情報(bào),近海處有一可疑船只正向公海方向行駛,邊防局迅速派出快艇追趕(如圖1).圖2中、分別表示兩船相對于海岸的距離(海里)與追趕時(shí)間(分)之間的關(guān)系.
(1)求、的函數(shù)解析式;
(2)當(dāng)逃到離海岸12海里的公海時(shí),將無法對其進(jìn)行檢查.照此速度,能否在逃入公海前將其攔截?若能,請求出此時(shí)離海岸的距離;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,ABCD是某公園的平面示意圖,A、B、C、D分別是該公園的四個(gè)入口,兩條主干道AC、BD交于點(diǎn)O,經(jīng)測量AB=0.5km,AC=1.2km,BD=1km,請你幫助公園的管理人員解決以下問題:
(1)公園的面積為 km2;
(2)如圖②,公園管理人員在參觀了武漢東湖綠道后,為提升游客游覽的體驗(yàn)感,準(zhǔn)備修建三條綠道AN、MN、CM,其中點(diǎn)M在OB上,點(diǎn)N在OD上,且BM=ON(點(diǎn)M與點(diǎn)O、B不重合),并計(jì)劃在△AON與△COM兩塊綠地所在區(qū)域種植郁金香,求種植郁金香區(qū)域的面積;
(3)若修建(2)中的綠道每千米費(fèi)用為10萬元,請你計(jì)算該公園修建這三條綠道投入資金的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com