【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C,延長C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2019個正方形的面積為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)相似三角形對應(yīng)邊成比例得到正方形的邊長,進(jìn)而表示正方形的面積,然后觀察得到的正方形的面積即可得到規(guī)律,從而得到結(jié)論.
∵正方形ABCD的點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),
∴OA=1,OD=2,
∴AD=,=,
∵正方形ABCD,正方形A1B1C1C,
∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,
∴∠A1AB=∠ADO,
∵∠AOD=∠A1BA=90°,
∴△AA1B∽△DAO,
∴=
∵AD=AB=,
∴A1B=,
∴A1C==,
同理可得:A2C1=,
A3C2=,
……
A2019C2018=,
∴第2019個正方形的面積為:=.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是所對弦AB上一動點(diǎn),過點(diǎn)P作PC⊥AB交于點(diǎn)C,取AP中點(diǎn)D,連接CD.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,C.D兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A重合時,y的值為0;當(dāng)點(diǎn)P與點(diǎn)B重合時,y的值為3)
小凡根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小凡的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.2 | 3.2 | 3.4 | 3.3 | 3 |
(2)建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合所畫出的函數(shù)圖象,解決問題:當(dāng)∠C=30°時,AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢市政府大力扶持大學(xué)生創(chuàng)業(yè),童威在政府的扶持下投資銷售一種進(jìn)價為每盞20元的護(hù)眼臺燈,銷售過程中發(fā)現(xiàn),每月銷售量y(盞)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù):y=﹣10x+500.
(1)設(shè)每月獲得的利潤為w(元),求w與x的關(guān)系式.
(2)如果想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元.如果童威想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)的坐標(biāo)分別為A(2,2),B(1,0),C(3,1).
(1)畫出△ABC關(guān)于x軸對稱的△A1BC1,寫出點(diǎn)C1的坐標(biāo)為 ;
(2)畫出△ABC繞原點(diǎn)O逆時針旋轉(zhuǎn)90°的△A2B1C2,寫出點(diǎn)C2的坐標(biāo)為 ;
(3)在(1),(2)的基礎(chǔ)上,圖中的△A1BC1、△A2B1C2關(guān)于點(diǎn) 中心對稱;
(4)若以點(diǎn)D、A、C、B為頂點(diǎn)的四邊形為菱形,直接寫出點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③a﹣b+c>0;④當(dāng)x≠1時,a+b>ax2+bx;⑤4ac<b2.其中正確的有( 。﹤
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為P,且與y軸交于點(diǎn)A,與直線交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)).
(1)求拋物線的頂點(diǎn)P的坐標(biāo)(用含a的代數(shù)式表示);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn),記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.
①當(dāng)時,請直接寫出“W區(qū)域”內(nèi)的整點(diǎn)個數(shù);
②當(dāng)“W區(qū)域”內(nèi)恰有2個整點(diǎn)時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點(diǎn)的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)
(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;
(2)請用列舉法表示出由,確定的點(diǎn)所有可能的結(jié)果.
(3)求點(diǎn)在函數(shù)圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com