如圖1,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰Rt△ABC.
(1)求C點的坐標;
(2)如圖2,P為y軸負半軸上一個動點,當P點向y軸負半軸向下運動作业宝時,以P為頂點,PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點,求OP-DE的值.

解:(1)如圖1,過C作CM⊥x軸于M點,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
則∠MAC=∠OBA,
在△MAC和△OBA中

∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴點C的坐標為(-6,-2).

(2)如圖2,過D作DQ⊥OP于Q點,則DE=OQ
∴OP-DE=OP-OQ=PQ,
∵∠APO+∠QPD=90°,
∠APO+∠OAP=90°,
∴∠QPD=∠OAP,
在△AOP和△PQD中,
,
∴△AOP≌△PQD(AAS).
∴PQ=OA=2.
即OP-DE=2.
分析:①如圖1,過C作CM⊥x軸于M點,則可以求出△MAC≌△OBA,可得CM=OA=2,MA=OB=4,故點C的坐標為(-6,-2).
②如圖2,過D作DQ⊥OP于Q點,則DE=OQ
利用三角形全等的判定定理可得△AOP≌△PQD(AAS)
進一步可得PQ=OA=2,即OP-DE=2.
點評:本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,關鍵還要巧妙作出輔助線,再結(jié)合坐標軸才能解出,本題難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半徑OA=2cm,圓心角為90°的扇形OAB中,C為
AB
的中點,D為OB的中點,則圖中陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線OA與反比例函數(shù)的圖象交于點A(3,3),向下平移直線OA,與反比例函數(shù)的精英家教網(wǎng)圖象交于點B(6,m)與y軸交于點C,
(1)求直線BC的解析式;
(2)求經(jīng)過A、B、C三點的二次函數(shù)的解析式;
(3)設經(jīng)過A、B、C三點的二次函數(shù)圖象的頂點為D,對稱軸與x軸的交點為E.
問:在二次函數(shù)的對稱軸上是否存在一點P,使以O、E、P為頂點的三角形與△BCD相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,射線OA表示的是
北偏東65°
北偏東65°
方向,射線OB表示的是
南偏東20°
南偏東20°
方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖已知OA=OD,要證明△AOB≌△DOC,還應添加一個條件
BO=CO
BO=CO
(只寫一個)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,射線OA和點P.
(1)作射線OP;
(2)過點P作PM⊥OP,與OA交于點M;
(3)過點P作PN⊥OA,垂足為N;
(4)圖中線段
PN
PN
的長表示點P到射線OA所在直線的距離.

查看答案和解析>>

同步練習冊答案