【題目】鮮豐水果店計劃用/盒的進價購進一款水果禮盒以備銷售.

據(jù)調(diào)查,當該種水果禮盒的售價為/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高 于多少元?

在實際銷售時,由于天氣和運輸?shù)脑颍亢兴Y盒的進價提高了,而每盒 水果禮盒的售價比中最高售價減少了,月銷量比中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.

【答案】1)若使水果禮盒的月銷量不低于盒,每盒售價應不高于元;(2的值為

【解析】

1)設每盒售價應為x元,根據(jù)月銷量=98030×超出14元的部分結(jié)合月銷量不低于800盒,即可得出關于x的一元一次不等式,解之取其最大值即可得出結(jié)論;

2)根據(jù)總利潤=每盒利潤×銷售數(shù)量,即可得出關于m的一元二次方程,解之取其正值即可得出結(jié)論.

解:設每盒售價 元.

依題意得:

解得:

答:若使水果禮盒的月銷量不低于盒,每盒售價應不高于

依題意:

令:

化簡:

解得:(舍去),

答:的值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EFAB上.

(1)求證:△AED∽△DCG;

(2)若矩形DEFG的面積為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:等腰三角形具有性質(zhì)“等邊對等角”.事實上,不等邊三角形也具有類似性質(zhì)“大邊對大角”:如圖1.在△ABC中,如果ABAC,那么∠ACB>∠ABC.證明如下:將AB沿△ABC的角平分線AD翻折(如圖2),因為ABAC,所以點B落在AC的延長線上的點B'處.于是,由∠ACB>∠B',∠ABC=B',可得∠ACB>∠ABC

1)靈活運用:從上面的證法可以看出,折紙常常能為證明一個命題提供思路和方法.由此小明想到可用類似方法證明“大角對大邊”:如圖3.在△ABC中,如果∠ACB>∠ABC,那么ABAC.小明的思路是:沿BC的垂直平分線翻折……請你幫助小明完成后面的證明過程.

2)拓展延伸:請運用上述方法或結(jié)論解決如下問題:

如圖4,已知M為正方形ABCD的邊CD上一點(不含端點),連接AM并延長,交BC的延長線于點N.求證:AMAN2BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中有格點△ABC(注:頂點在網(wǎng)格線交點處的三角形叫做格點三角形).只用沒有刻度的直尺,按如下要求畫圖,

(1)以點C為位似中心,在如圖中作△DECABC,且相似比為1:2;

(2)若點B為原點,點C(4,0),請在如圖中畫出平面直角坐標系,作出△ABC的外心,并直接寫出△ABC的外心的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為分別位于軸,軸上,點上,于點,函數(shù)的圖像經(jīng)過點,若,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】調(diào)查作業(yè):了解你所住小區(qū)家庭3月份用氣量情況.

小天、小東和小蕓三位同學住在同一小區(qū),該小區(qū)共有300戶家庭,每戶家庭人數(shù)在25之間,這300戶家庭的平均人數(shù)約為3.3

小天、小東和小蕓各自對該小區(qū)家庭3月份用氣量情況進行了抽樣調(diào)查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2、表3

1抽樣調(diào)查小區(qū)4戶家庭3月份用氣量統(tǒng)計表(單位:

家庭人數(shù)

2

3

4

5

用氣量

14

19

21

26

2抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計表(單位:

家庭人數(shù)

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

用氣量

10

11

15

13

14

15

17

17

18

18

18

18

18

20

22

3抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計表(單位:

家庭人數(shù)

2

2

2

3

3

3

3

3

3

4

4

4

4

5

5

用氣量

10

12

13

14

17

17

18

20

20

21

22

26

31

28

31

根據(jù)以上材料回答問題:

1)小天、小東和小蕓三人中,哪一位同學抽樣調(diào)查的數(shù)據(jù)能較好地反應出該小區(qū)家庭3月份用氣量情況?請簡要說明其他兩位同學抽樣調(diào)查的不足之處;

2)小東將表2中的數(shù)據(jù)按用氣量大小分為三類;

①節(jié)約型:;

②居中型:;

③偏高型:;并繪制成如下扇形統(tǒng)計圖,請幫助他將扇形圖補充完整;

3)小蕓算出表33月份平均每人的用量為,請估計該小區(qū)3月份的總用氣量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,函數(shù) y kx y 的圖象交于 A、B 兩點, A y 軸的垂線交函數(shù)的圖象于點 C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則yx的函數(shù)關系式是(

A.y=﹣(x602+1825B.y=﹣2x602+1850

C.y=﹣(x652+1900D.y=﹣2x652+2000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,對于點Pxpyp)和圖形G,設QxQ,yQ)是圖形G上任意一點,|xpxQ|的最小值叫點P和圖形G的“水平距離”,|ypyQ|的最小值叫點P和圖形G的“豎直距離”,點P和圖形G的“水平距離”與“豎直距離”的最大值叫做點P和圖形G的“絕對距離”

例如:點P(﹣2,3)和半徑為1O,因為O上任一點QxQ,yQ)滿足﹣1xQ1,﹣1yQ1,點PO的“水平距離”為|2xQ|的最小值,即|2﹣(﹣1|=1,點PO的“豎直距離”為|3yQ|的最小值即|31|=2,因為21,所以點PO的“絕對距離”為2

已知O半徑為1,A2,),B4,1),C43

1直接寫出點AO的“絕對距離”

已知D是△ABC邊上一個動點,當點DO的“絕對距離”為2時,寫出一個滿足條件的點D的坐標;

2)已知E是△ABC邊一個動點,直接寫出點EO的“絕對距離”的最小值及相應的點E的坐標

3)已知PO上一個動點,△ABC沿直線AB平移過程中,直接寫出點P與△ABC的“絕對距離”的最小值及相應的點P和點C的坐標.

查看答案和解析>>

同步練習冊答案